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Problem-Solving Toolkit

Big Picture

ESC103 problems almost always reduce to one of these patterns:

• Vector geometry: lengths, angles, projections, lines, planes.

• Linear systems: interpreting Ax = b using row and column pictures.

• Matrix structure: independence, rank, null space, factorizations like A = CR.

• Solving systems: Gaussian elimination, inverses.

• Best approximation: least squares (projecting onto a column space).

• Dynamics: ODEs written as vector equations; Euler / Improved Euler

Default Strategy

When you see a problem:

1. Identify the object. Is it a vector, line, plane, matrix, system, or ODE?

2. Pick a picture.

• Geometry: sketch vectors / lines / planes.

• Row picture: each row is a line/plane.

• Column picture: Ax as combination of column vectors.

3. Use the right tool.

• Dot / cross products and projections for geometry.

• Gaussian elimination or RREF for systems.

• A = CR or column space / null space for structure questions.

• Normal equations for least squares.

• Euler / Improved Euler for ODEs.

Practice: Toolkit Drills

1. Given a random system of equations, practice writing:

• the scalar form,

• the matrix form Ax = b,

• the row picture,

• the column picture.

2. For each unit below, pick one example and redraw the geometric picture completely from
memory.
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1 Unit 1: Vectors in Rn

1.1 What is a vector?

Vector = Arrow + Numbers

A vector in Rn is:

• geometrically: an arrow with direction and length;

• algebraically: a column of n numbers.

For example, in R3,

v =

 2
−1
4


points 2 units in x, −1 in y, 4 in z from the origin.

1.2 Basic operations

• Addition: tip-to-tail picture.

• Scalar multiplication: stretch or flip the arrow.

The magnitude (length) of v =

v1
. . .
vn

 is

∥v∥ =
√

v21 + · · ·+ v2n.

Practice: Unit 1 Practice

1. Sketch u =

[
2
1

]
and v =

[
−1
2

]
in R2. Draw u+ v.

2. Compute the length of w =

[
3
−4

]
and verify using the picture.

3. In R3, describe geometrically the linear combinationλ

12
3

 : λ ∈ R

 .
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2 Unit 2: Dot Product and Projection

2.1 Dot product

Algebra and Geometry

For v,w ∈ Rn,
v ·w = v1w1 + · · ·+ vnwn.

Geometrically,
v ·w = ∥v∥ ∥w∥ cos θ,

where θ is the angle between them.

Warning: Orthogonality

If v · w = 0 and neither vector is zero, that means they are perpendicular. In our course
questions, “orthogonal” always means that the dot product is zero.

2.2 Projection onto a line

When you project w onto the line spanned by v you get

projv w =
w · v
v · v

v.

Example: Projection in R2

Let

v =

[
2
1

]
, w =

[
3
4

]
.

Then
w · v = 3 · 2 + 4 · 1 = 10, v · v = 22 + 12 = 5.

So

projv w =
10

5
v = 2

[
2
1

]
=

[
4
2

]
.

Practice: Unit 2 Practice

1. Compute v ·w and the angle between v =

[
1
2

]
, w =

[
−2
1

]
.

2. Find projv w for v =

10
1

, w =

 2
−1
3

.
3. Given two nonzero vectors with dot product zero, draw a picture and explain why the

Pythagorean theorem appears naturally.
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3 Unit 3: Cross Product in R3

3.1 Definition and right-hand rule

For v =

v1v2
v3

 and w =

w1

w2

w3

,

v ×w =

 v2w3 − v3w2

−(v1w3 − v3w1)
v1w2 − v2w1

 .

Geometric Meaning

• v ×w is perpendicular to both v and w.

• ∥v ×w∥ is the area of the parallelogram spanned by v and w.

• Right-hand rule: rotate from v to w; your thumb points along v ×w.

Practice: Unit 3 Practice

1. Compute v ×w for v =

10
0

, w =

02
0

 and interpret.

2. Show that v ×w = 0 if v and w are parallel.

3. For generic nonparallel v and w, sketch the parallelogram, label its area, and mark the
vector v ×w.
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4 Unit 4: Lines in 3D

4.1 Vector equation of a line

Line = Point + Direction

A line in R3 is completely determined by:

• one point on the line r0 =

x0y0
z0

;
• a direction vector d parallel to the line.

All points on the line can be written as

r = r0 + td, t ∈ R.

Component-wise,
x = x0 + d1t, y = y0 + d2t, z = z0 + d3t.

Practice: Unit 4 Practice

1. Find the vector equation of the line through P = (1,−2, 5) and Q = (4, 0, 9).

2. Check whether the point (7, 2, 17) lies on that line.

3. Give a geometric explanation of why a single direction vector is enough to describe the
whole line.
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5 Unit 5: Planes in 3D

5.1 Vector and scalar equations

Plane = Point + Two Directions

A plane can be described by:

• a base point r0;

• two non-parallel direction vectors d1,d2.

Any point on the plane has the form

r = r0 + sd1 + td2, s, t ∈ R.

Another way: use a normal vector n =

ab
c

 perpendicular to the plane. Then any point (x, y, z)

on the plane satisfies
ax+ by + cz = d

for some constant d.

Example: Plane Through a Point

Suppose a plane has normal n =

 2
−3
0

 and passes through (1, 0, 0). Then

2 · 1− 3 · 0 + 0 · 0 = 2,

so its scalar equation is
2x− 3y + 0z = 2.

Practice: Unit 5 Practice

1. A plane is described by xy
z

 =

10
2

+ s

11
0

+ t

01
1

 .

Find a normal vector and then the scalar equation.

2. For 2x− 3y = 0, explain why this is

• a line in R2,

• a plane in R3.

3. Describe the intersection of two non-parallel planes in R3.
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6 Unit 6: Row Picture and Column Picture

6.1 Matrix form of a system

A system of linear equations can be written as Ax = b.

Two Mental Pictures

• Row picture: each row is a line/plane; solutions are intersections.

• Column picture: Ax is a linear combination of columns; we ask whether b is in the
span of the columns.

Example: Simple System {
x− 2y = 1,

3x+ 2y = 11.

Row picture: two lines in the plane intersecting at (3, 1).
Column picture:

x

[
1
3

]
+ y

[
−2
2

]
=

[
1
11

]
.

We are finding the right linear combination of the columns to produce the right-hand side.

Practice: Unit 6 Practice

1. Write 2x+ y = 3, 4x− y = 1 in matrix form and sketch the row picture.

2. For your matrix A, write the column picture equation Ax = b.

3. Interpret “no solution” in the column picture: where is b relative to C(A)?
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7 Unit 7: Matrix-Vector Multiplication and Basic Matrix Ops

7.1 What does Ax really mean?

Let A be m× n and x ∈ Rn.

Two Equivalent Views

• Row view: each entry of Ax is a dot product of a row with x.

• Column view: Ax is a linear combination of columns with coefficients from x.

7.2 Matrix addition and scalar multiplication

Matrices of the same size add entrywise:

(A+B)ij = aij + bij , (cA)ij = c aij .

Practice: Unit 7 Practice

1. Let A =

[
1 −2
3 2

]
, x =

[
x
y

]
. Compute Ax by the row-dot-product view and by the column-

combination view.

2. For A =

[
1 0
2 1

]
, sketch the effect of A on the standard basis vectors e1, e2.

3. Show that matrix addition is commutative but matrix multiplication is generally not.
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8 Unit 8: Linear Independence, Column Space, and Rank

8.1 Independence

Informal Idea

Vectors are linearly independent if none of them is “redundant”. You cannot build one as a
linear combination of the others.

Formally, {v1, . . . ,vk} is independent if

c1v1 + · · ·+ ckvk = 0⇒ c1 = · · · = ck = 0.

8.2 Column space and rank

Column Space and Rank

• C(A): all linear combinations of the columns of A.

• rank(A): number of linearly independent columns of A = dimension of C(A).

Practice: Unit 8 Practice

1. Check whether

12
3

,
24
6

,
10
1

 are independent.

2. For A =

1 2 3
2 4 6
1 3 5

, find rank(A) and give a basis for C(A).

3. Geometrically describe the column space in R3 when rank(A) = 1, rank(A) = 2, and
rank(A) = 3.
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9 Unit 9: Matrix Multiplication

9.1 Definition and pictures

If A is m× n and B is n× p, then C = AB is m× p and

cij = (row i of A) · (column j of B).

Column Picture

The j-th column of AB is A times the j-th column of B:

(AB)j = Abj .

So multiplying by B first forms some combinations, then A acts on those results.

Practice: Unit 9 Practice

1. Compute AB for A =

[
1 2
3 4

]
, B =

[
5 6
7 8

]
and verify AB ̸= BA.

2. For A =

[
1 0
0 2

]
, explain geometrically what multiplying by A does in R2.

3. Show that A(Ix) = (AI)x = Ax for a compatible identity matrix I.
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10 Unit 10: Factoring A = CR

10.1 Why factor a matrix?

Idea of A = CR

• C collects the independent columns of A (a basis for C(A)).

• R records the coefficients that reconstruct every column of A from columns of C.

This splits “geometry” (column space) from “instructions” (how to build each column).

10.2 Constructing C and R

1. Scan columns of A from left to right; keep the first nonzero, then each column that cannot be
written as a combination of previous ones. These form C.

2. For each original column aj write aj = r1jc1 + · · · + rrjcr. The coefficients (r1j , . . . , rrj) form
the j-th column of R.

Practice: Unit 10 Practice

1. Factor A =

2 6 4
4 12 8
1 3 2

 as A = CR.

2. From your factorization, read off C(A) and rank(A).

3. What happens to R if all columns of A are independent?
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11 Unit 11: Solving Ax = 0 and Null Space

11.1 Null space and nullity

Null Space

The null space of A is
N (A) = {x : Ax = 0}.

It consists of all input vectors that A collapses to zero. When solving Ax = 0, the free
variables represent the entire null space.

Rank–Nullity

For an m× n matrix,
rank(A) + nullity(A) = n.

Here, nullity(A) is the dimension of the null space (the number of free variables). n represents
the number of columns in A

11.2 Using A = CR

If A = CR with independent columns in C,

Ax = 0 ⇐⇒ CRx = 0 ⇐⇒ Rx = 0.

So you can work with the smaller system Rx = 0.

Practice: Unit 11 Practice

1. Find a basis for N (A) where A =

[
1 1 −1
2 2 −2

]
.

2. For a 4 × 5 matrix with rank 3, how many free variables does Ax = 0 have? What is
nullity(A)?

3. Explain geometrically whatN (A) looks like in R3 when rank(A) = 1 and when rank(A) = 2.
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12 Unit 12: Elementary Row Operations and Elementary Matri-
ces

12.1 Three legal row moves

Elementary Row Operations

1. Swap two rows.

2. Multiply a row by a nonzero constant.

3. Add a multiple of one row to another.

These are the only moves allowed in Gaussian elimination.

Each row operation corresponds to left-multiplication by an elementary matrix built from the
identity by the same row move.

Practice: Unit 12 Practice

1. Find the elementary matrix that swaps rows 1 and 3 of a 3× 3 matrix.

2. Find the elementary matrix that performs R2 ← R2 − 4R1 on a 2× 2 matrix.

3. Explain why elementary row operations do not change the solution set of Ax = b.
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13 Unit 13: Gaussian Elimination, REF and RREF

13.1 Echelon forms

REF vs RREF

• REF (row echelon form): staircase of leading nonzero entries moving right as you go
down.

• RREF (reduced REF): in addition, each leading entry is 1 and is the only nonzero entry
in its column.

Gaussian elimination:

1. Forward elimination: turn A into REF.

2. Optional back substitution or further elimination to get RREF.

Practice: Unit 13 Practice

1. Row-reduce A =

1 2 −1
2 4 −2
1 3 0

 to RREF.

2. From your RREF, identify rank(A) and a basis for N (A).

3. Describe the solution set of Ax = 0 in words (point, line, plane, etc.).
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14 Unit 14: Solving Ax = b

14.1 Augmented matrix

To solve Ax = b, work with the augmented matrix

[A |b] −→ [R0 |d],

where R0 is RREF.

Types of Solution Sets

• No solution: a row of zeros in R0 with a nonzero entry in d.

• Unique solution: pivot in every variable column.

• Infinitely many solutions: at least one free variable, no contradictions.

Practice: Unit 14 Practice

1. Solve


x+ 2y − z = 1,

2x+ 4y − 2z = 2,

x+ 3y − z = 2.

and classify the solution set.

2. Explain how the column picture tells you whether Ax = b has a solution.

3. Construct a 3 × 3 system with infinitely many solutions and write one free parameter
explicitly.
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15 Unit 15: Rank Nullity

15.1 Rank and the column space

Rank

For an m× n matrix A:

• The column space C(A) is the set of all linear combinations of the columns of A.

• The rank of A, written rank(A), is the dimension of C(A).

Geometrically, rank(A) is:

• 0 if all columns are zero,

• 1 if all columns lie on a single line through the origin,

• 2 if the columns span a plane through the origin (in R3),

• etc.

15.2 Null space, nullity, and the rank–nullity theorem

Null Space and Nullity

The null space of A is
N (A) = {x : Ax = 0}.

It contains all solutions to the homogeneous system Ax = 0.
The nullity of A, written nullity(A), is the dimension of N (A) (the number of free variables in
Ax = 0).

Rank–Nullity Theorem

For an m× n matrix A,
rank(A) + nullity(A) = n,

where n is the number of columns of A.
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15.3 Consistency of Ax = b

Consistency Conditions

Consider Ax = b.

• The system is consistent (has at least one solution) if b ∈ C(A).

• In RREF, inconsistency appears as a row[
0 0 . . . 0 | d

]
, d ̸= 0.

• If the system is consistent and every column corresponding to a variable has a pivot, the
solution is unique.

• If the system is consistent and at least one variable column has no pivot, the system has
infinitely many solutions (free variables).

Practice: Unit 15 Practice

1. Let

A =

1 2 3
2 4 6
1 3 5

 .

Row-reduce A to RREF, find rank(A) and a basis for C(A).

2. For the same matrix A, find a basis forN (A) and compute nullity(A). Check that rank(A)+
nullity(A) equals the number of columns.

3. Consider the system Ax = b with

A =

[
1 1 0
2 2 1

]
, b =

[
1
2

]
.

Use the augmented matrix and RREF to decide:

• Is the system consistent?

• If yes, does it have a unique solution or infinitely many?
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16 Unit 16: Least Squares and Best-Fit Lines

16.1 When no exact solution exists

Sometimes Ac = y has no solution. We then look for the vector cls that makes ∥Ac− y∥ as small
as possible.

Normal Equations

Least-squares solutions satisfy
ATA cls = ATy.

If ATA is invertible, then
cls = (ATA)−1ATy.

Geometric picture: Acls is the projection of y onto C(A).

16.2 Best-fit line

For data points (xi, yi) and model y = a+ bx,

A =

1 x1
...

...
1 xm

 , c =

[
a
b

]
, y =

 y1
...
ym

 .

Practice: Unit 16 Practice

1. Given data points (0, 4), (2,−1), (3, 0), compute the best-fit line.

2. Compute the residual vector e = y −Acls and its norm.

3. Explain why e is orthogonal to every column of A.
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17 Unit 17:Euler’s

17.1 Turning y′′ = −y into a first-order system

State Vector

Second–order equations like y′′ = −y cannot be used directly in Euler’s method, because Euler
requires a first-order system. To fix this, we introduce a new vector that stores both y and y′.
Let

z =

[
z1
z2

]
=

[
y
y′

]
.

Here z1 = y and z2 = y′.
Differentiate each component:

z′1 = y′ = z2, z′2 = y′′ = −y = −z1.

This gives a first-order system:

z′ = Az, A =

[
0 1
−1 0

]
.

17.2 Euler’s method

To approximate the solution forward in time, we use the update rule

zn+1 = zn +Azn∆t.

Euler uses the slope Azn at the current point and takes a small step of size ∆t in that direction.
Because z = (y, y′), each step updates both the position y and the velocity y′.

Practice: Unit 17 Practice

1. Write the system z′ = Az explicitly for y′′ = −y (two scalar first-order equations).

2. Starting from y(0) = 0, y′(0) = 1, take one Euler step with ∆t = π/4 to approximate
y(π/4); compare with the exact value sin(π/4).

3. Explain why smaller ∆t typically improves Euler’s accuracy.
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18 Unit 18: Higher Order Systems and Improved Euler

18.1 From higher order to systems

Any higher-order linear ODE can be rewritten as a first-order system by introducing extra variables
for each derivative:

y(k) = new variable.

For example, y′′ + 4y = 0 can be written in terms of

z1 = y, z2 = y′

so that
z′1 = z2, z′2 = −4z1.

This gives z′ = Az for a suitable matrix A, and we can apply EM methods to z.

18.2 Improved Euler Method

Improved Euler

The Improved Euler (or Heun) method is a predictor–corrector method. It improves on
ordinary Euler by using two slope estimates instead of just one.

Step 1: Predict Take one forward Euler step using the slope at the beginning:

zEn+1 = zn +Azn∆t.

Step 2: Correct Compute the slope at this predicted point and average:

zIEn+1 = zn +
1

2

(
Azn +AzEn+1

)
∆t.

Geometric idea: Euler uses only the initial slope, which can drift away from the true curve.
Improved Euler “looks ahead/” by predicting the next point, checking the slope there, and
then averaging the two slopes to get a better estimate.

Practice: Unit 18 Practice

1. Apply Improved Euler with one step of size ∆t = π/4 to approximate sin(π/4) for y′′ = −y.

2. Compare numerically the Euler and Improved Euler approximations at t = π/4.

3. Explain the geometric reason the average slope is more accurate than the single slope used
by Euler.
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19 Unit 19: Boundary Value Problems

19.1 Finite differences for y′′

For equally spaced points tn = t0 + n∆t,

y′′(tn) ≈
yn+1 − 2yn + yn−1

(∆t)2
.

From ODE to Linear System

For an ODE like y′′ + y = 0 with boundary conditions y(t0) = α, y(tm) = β:

• Approximate y′′ at interior points using finite differences.

• This gives linear equations in y1, . . . , ym−1.

• Collect them into a matrix system Ky = f .

Solving this linear system gives approximate values for the solution at the grid points.

Practice: Unit 19 Practice

1. For y′′+y = 0, y(0) = 0, y(π/2) = 1, use ∆t = π/4 (two interior points) to set up and solve
the system.

2. For the same problem, use ∆t = π/8 (four intervals) and write the 3×3 system for y1, y2, y3,
use this to solve.

3. Sketch the approximate solutions for both step sizes and compare to y(t) = sin t.
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20 Unit 20: Inverse Matrices (Square Matrices)

20.1 Definition and meaning

Inverse Matrix

In this course we only work with square (2× 2) matrices.
A 2× 2 matrix

A =

[
a b
c d

]
is called invertible if there exists another 2× 2 matrix B such that

AB = I and BA = I,

where

I =

[
1 0
0 1

]
is the 2× 2 identity matrix.
In this case B is unique and we write B = A−1, so

AA−1 = A−1A = I.

If A is invertible and Ax = b, then
x = A−1b.

20.2 Finding A−1 for a 2× 2 matrix

For

A =

[
a b
c d

]
,

the determinant of A is
det(A) = ad− bc.

If det(A) ̸= 0, then A is invertible and the inverse is

A−1 =
1

ad− bc

[
d −b
−c a

]
.

You can also find A−1 using Gaussian elimination on the augmented matrix

[A | I] =
[
a b 1 0
c d 0 1

]
.

Apply row operations until the left side becomes I:

[A | I] −→ [I | A−1].
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Warning: When the inverse does not exist

If, when you row-reduce [A | I], the left-hand side cannot be turned into the identity matrix
(for example, you get a row of zeros on the left), then A is not invertible.
For a 2× 2 matrix,

A =

[
a b
c d

]
,

another way to see this is using the determinant:

det(A) = ad− bc = 0 =⇒ A is not invertible.

In this situation we say that A is singular and it has no inverse.

Practice: Unit 20 Practice

1. Let

A =

[
2 1
5 3

]
.

Compute det(A) and then find A−1 using the 2× 2 formula.

2. Check your answer by computing both AA−1 and A−1A and verifying that each product is
the identity matrix.

3. Give an example of a 2×2 matrix B that is singular (not invertible). Show that det(B) = 0
and explain, using row-reduction on [B | I], why you cannot turn the left side into the
identity.
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