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Lecture 1 — The Three Principles of Engineering
The Three Principles of Engineering

“The four to twelve page Toike Oike we remember — with its notices of School events, reports of meetings, accounts
of the exploits of School teams, messages from the Dean and occasional jokes — would scarcely seem to have the
potential to convulse the University of Toronto. True the bound volume in the Engineering Society Office did have one
issue with a short joke encircled in blue pencil. We understood that this had got the editor suspended — possibly even
expelled. Itis also true that in our fourth year Engineering Physics wrested control from the former editors, apparently
meeting with little organized resistance, and produced Volume XXX (or possibly XXXI — there seems to have been
some confusion). Luckily no one attempted to use this experiment as a launching pad for a career in journalism or
politics. But one of the editors who remains active has just fearlessly restated the three fundamental Principles of

50th ANNIVERSARY REUNION
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The Second Principle of Engineering, “You can’t push on a rope”, is very different from the First Principle. From a
structural engineering perspective, a rope collapses when pushed because it is too flexible to carry a compressive
(pushing) force. The technical reason why this occurs is because the rope buckles. Buckling, which is discussed in
greater detail later in the course, does not exclusively affect ropes, but can happen to any slender member is being
subjected to a large compression force.

Buckling of slender compression members was the cause of failure of the Quebec Bridge, which collapsed during
construction in 1907, killing 75 workers. The bridge, which was designed by the American engineer Theodore Cooper,
had a similar shape as the Firth of Forth Railway Bridge which was at the time the longest cantilever truss bridge in
the world. Baker and Fowler’s bridge, shown in Fig. 1.2, used very large members to safely carry the large compression
forces in the structure. Cooper, who ridiculed the Firth of Forth Railway Bridge for using excessive amounts of steel,

Engineering presented in that 1939 manifesto: instead used comparatively slender members in his design, which is shown in Fig. 1.3. These members, which buckled

SPS CLASS OF 3T9 during construction, caused the failure shown in Fig. 1.4.
1. F=MxA

2. You can't push on a rope.

3. Anecessary condition for solving any given Engineering problem is to know the answer before starting

Structural engineering is a branch of civil engineering which is interested in the analysis and design of structures
which must safely carry forces. Some examples of civil structures designed by structural engineers, which are typically
built out of steel, concrete, or timber, include buildings, bridges, tunnels, dams, and concrete offshore platforms. The
principles used in structural engineering are also applicable to disciplines outside of civil engineering, such as
aerospace engineering and biomedical engineering. saTDAY, I 30, 19

Before getting into the nuts and bolts of structural engineering, it is worth spending some time pondering the meaning
of the Three Principles of Engineering in greater detail. As their name suggests, these principles apply, generally i SN
speaking, to all disciplines of engineering. They are particularly relevant to structural engineers however, as the Fig. 1.2 — Baker and Fowler’s Firth of Forth Railway Bridge. The two main spans are each 1700 feet long.
collapse of significant structures — including those in Canada — have greatly influenced how engineering is practiced Opened 1890.

today. In fact, the Iron Ring ceremony, a ritual undergone by all engineers trained in Canada to affirm the duties and

responsibilities of the profession, has its roots in the collapse of the Quebec Bridge in 1907.
- u\\v(‘.‘\\ ‘

S S SR, T
Fig.1.1 - Engineering Manifesto.

The First Principle of Engineering, F = M x A, is Newton’s second law of motion. It has practical applications in
many branches of physics and engineering. For example, mechanical and aerospace engineers use it to design objects
intended to move, such as transportation vehicles, spacecraft, or even robotic drones. Structural engineers on the other
hand, typically make use of the special case of Newton’s second law, which is when A, the acceleration of a body, is
equal to 0. When this condition is satisfied, a system is said to be in a state of equilibrium. The concept of equilibrium
is fundamental to structural engineering, which is primarily interested in systems which do not accelerate except under 5
exceptional circumstances, like during a severe earthquake.

Symbolically, the First Principle of Engineering represents the idea that engineers use mathematical models to
understand and shape the world around them. Many branches of engineering do not use Newton’s laws of motion but
instead use their own discipline-specific set of tools which are also grounded in physics and math. Practicing engineers — i
must master the application of these tools in their work, while engineers who work in research seek to develop new Fig. 1.3 — Cooper’s Quebec Bridge during
models and expand the body of knowledge of their respective field of engineering. construction.

e

Fig. 1.4 — Cooper’s Quebec Bridge after collapse
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Although the First Principle of Engineering celebrates the use of mathematical models in engineering, the Second
Principle is a reminder to draw upon common sense and experience when working with the real world. The results of
calculations — which can be simple calculations done by hand or complex simulations performed on a supercomputer
—must be checked to ensure that they make sense. We know from our experience living in the real world that gravity
pulls objects down, materials tend to expand when heated, light travels faster than sound, slender members buckle
when pushed with great force, and so on. Calculations which suggest otherwise should generally not be trusted.

The Third Principle of Engineering is perhaps best summarized as “To find the answer, you must know the answer”.
Although seemingly paradoxical, engineering is full of situations where this statement is true. For example, structural
engineers often encounter the following dilemma: a bridge must be designed to carry loads which includes its own
self-weight. However, its weight is not known until after the bridge has been designed, which in itself requires knowing
its weight at the beginning of the design process. Without experience, resolving this paradox can be challenging and
may even result in designs which are dangerously unsafe. Navigating through most engineering problems therefore
requires a reasonable idea of what the final design will be before starting, i.e., the answer must be known before it is
obtained.

The Third Principle of Engineering illustrates the value of experience when practicing engineering. It is also a
reminder of the dangers of approaching new problems where one does not have any prior experience to act as a guide.
The collapse of the Quebec Bridge, which was by far the longest bridge ever designed by Cooper, can partially be
attributed to him straying from the Third Principle and attempting to find the answer without knowing what it should
have been in the first place.
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pulling on the rod, they would feel the rod resist their applied force with an equal and opposite reaction force in order
to maintain this state of equilibrium. A free body diagram drawn through any point along the rod would show that the
internal force at every location is a pulling, or tensile, force of 100 N.

T=100N-— = — - T=100N
Fig. 2.2 — A body carrying 100 N of tension.

A member like the one shown in Fig. 2.2 which is carrying a pulling force acting through its axis is said to be in
tension. The opposite of tension is compression, which is defined as a pushing force acting through the axis of a
member like the one shown in Fig. 2.3. A free body diagram drawn through any point along the rod’s length will
reveal that the internal force at every location is a pushing, or compression, force of 100 N.

C=100 N — e -—  C=100N

Fig. 2.3 A body carrying 100 N of compression.

Components of Forces in Two Dimensions

When dealing with two-dimensional systems in the x-y plane, forces will generally produce an effect in both the
horizontal (typically taken as x) and vertical (typically taken as y) directions. The actions of a force along these
i ons are called its x- and y- components respectively. A force F which is acting at an angle 0 relative to the x
axis, like the one drawn in Fig. 2.4, has components in the x- and y- direction, Fx and Fy respectively, defined as:

F, =Fcos@ (24)
F, = Fsin@ (2.5)
VL
X <
Fy
A
Fx

Fig. 2.4 — Components of a force.

The magnitude of the force is related to its components by Pythagoras’ theorem:

F= 62+ (R) (26)

Note: It often more convenient to define the x and y
components of a force F using the side lengths of a similar
triangle whose hypotenuse is parallel to F, instead of
defining an angle 6. For example, for the force vector shown
below in Fig. 2.5, defining sind = (b/c) and cos® = (alc)
allows us to define the components as:

a
F,=FcosH=FF

. b
f«;,:FsmG:EF

L.

Fig. 2.5 — Determining the components of a force using a
similar triangle.
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Lecture 2 — Basic Concepts: Newton, Pulling on Ropes, Units

Overview

In this chapter, a variety of basic concepts are introduced which permit simple structural systems to be understood
from a mechanics-based perspective. Beginning from Newton’s laws of motion, the idea of forces — such as the force
due to gravity, and tension and compression forces transmitted through structural members — is discussed. By
introducing the concept of a moment, a turning action which causes bodies to rotate, the three equations of equilibrium
for two-dimensional systems are presented. The chapter concludes with a brief discussion about units.

Newton’s Laws of Motion

Newton’s three laws of motion are:
“Every body continues in its state of rest, or of uniform motion in a right line, unless it is compelled to change
that state by forces impressed upon it”. This can be mathematically expressed as:

ZF:Oﬁa:O 2.1)

2. “The change of motion is proportional to the motive force impressed; and is made in the direction of the right
line in which that force is impressed”

F=ma (2.2)

3. “To every action there is always opposed an equal reaction: or, the mutual actions of two bodies upon each
other are always equal, and directed to contrary parts.”

In Eq. (2.1) and (2.2), F is a force applied to the body, m is its mass (which is assumed to be constant), and a is the
translational acceleration of the body. The first law of motion is especially relevant to the field of structural
engineering, where the bodies considered are typically not accelerating despite being subjected to numerous forces.

Basic Definitions — Forces
The acceleration due to gravity caused by the pull of the Earth on a body is defined as g. Using Newton’s second law,
the gravitational force Fq which pulls an object with mass m towards the centre of the earth, is defined as:

Fg=mg (2.3)

g varies around the world depending on the elevation of the ground, assuming a larger value closer to sea level and a
smaller one at high elevations. A typical value of g which is accurate to three significant figures is g = 9.81 m/s?. This
value is reasonably accurate over a wide range of elevations and will be used for all calculations in this course.

The main purpose of a structural member is to transmit forces from one location to another, like the rod shown in Fig.
2.2 which is being pulled with a force of 100 N on either side. The behaviour of the rod can be understood using
Newton’s first and third laws. Because the forces are equal in magnitude but pointing in opposite directions, the rod
does not accelerate and is in a state of translational equilibrium. Furthermore, if the forces were caused by two people
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Fig. 2.1 — Newton’s three laws of motion.
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Rotational Actions — Moments

In addition to causing translational motion, forces can also cause bodies to rotate. A moment is the turning effect
produced by a force about a reference point when the line of action of the force does not pass through the defined
point of reference. The moment Mi caused by a force about reference point i is defined as the product of the magnitude
of the force F and the perpendicular distance between its line of action and the reference point, di:

M =Fxd; @7
Because a moment is defined based on a reference point, the moment produced by a force will be different when

calculated about different reference points. For example, the 5 N force in Fig. 2.6 produces a counterclockwise
moment of 5 N x 4 m = 20 Nm about point A and a clockwise moment of 5 N x 6 m = 30 Nm about point B.

Fig. 2.6 - A'5 N force producing moments about points A and B.
A couple is special class of moments which occurs when two forces with the same magnitude F act in the opposite

direction of each other while being separated by a perpendicular distance d. This produces a pure turning effect about

every reference point in the x-y plane:
M=Fxd 2.8)

A schematic of a couple is shown in Fig. 2.8.

b = M= Fxd

Fig. 2.8 — Definition of a couple.

Note: Like moments, a torque is also a form of rotational
force. A torque is a special case of a moment which acts
through the axis of a prismatic object.

Fig. 2.7 — A moment acting about the axis of a prism, often
referred to as a torque.

Note: Like forces, moments are considered as vectors, not
scalars. Therefore, they are defined by both a magnitude,
which may be in units of Nm, and a direction, which may be
clockwise or counterclockwise.
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Equations of Equilibrium
For two-dimensional systems, Newton’s first law must be extended to include both translational and rotational
equilibrium. Translational equilibrium requires the sum of all forces to equal zero in both the x- and y- directions so
that there is no net translational acceleration:

z F=0 29

g =0 (210)

Rotational equilibrium in the x-y plane also requires that the sum of all moments be equal to zero so that there is no

rotational acceleration:
Z M=0 (211)

Equations (2.9) to (2.11) are collectively referred to as the equations of equilibrium. For a system which is in
equilibrium, these equations are always satisfied regardless of the choice of coordinate system and reference point
used to evaluate them.

Equilibrium of Forces which Meet at a Point

A special case of equilibrium is a system of forces which meet at a point, like the five forces shown in Fig. 2.9.
Because each force passes through a common point, rotational equilibrium is guaranteed because the moment
produced by each force about the point of intersection is equal to zero. Hence, only the two translational equations of
equilibrium, Eg. (2.9) and (2.10), need to be satisfied for the system to be in equilibrium.

Frictionless Pulleys
Pulleys used together with cables are one of the simplest systems used in structural engineering. Consider the circular
pulley with radius r shown in Fig. 2.10 which supports a rope being pulled with a force T1 on the left and T2 on the
right. When the system is in equilibrium, the pulley will not rotate and hence the sum of moments must equal to zero.
If it is assumed that there is no friction in the system, the moments produced by T1 and T2 about the centre of the
pulley, M1 and M. respectively, can be calculated as:

M, = T; X r, acting counterclockwise

M, =T, X r, acting clockwise

Taking the sum of all moments and setting them to equal to zero yields the following result:

ZMG=M,+M2=T,xr—T2><r=0—>T,=T2 (2.12)

Note: Equilibrium of a series of forces which meet at a point
can be visualized by graphically rearranging the force
vectors so that the tail of one vector connects with the tip of
another. If a closed path can be formed by re-arranging the
forces in this manner, the system is in equilibrium.

Fo
Fe

Fig. 2.9 — Five forces which meet at a point. They are in
equilibrium because the force vectors can be rearranged to
form a closed path. Note their lengths are proportionate to
their magnitude.
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Table 2.1 — Sample Unit Conversions

Working with SI units

Lengths, Strains and Curvatures Pressures and Stresses Forces and Moments

1Pa=1N/m?
1kPa=1kN/m?
1 MPa=1MN/m?
1 MPa =1 N/mm?

1m=1,000 mm
1m?=10° mm?
1m®=10°mm?

1kN=1,000N
1MN=10°N

1 Nm =1,000 Nmm
1 mm/m = 10° mm/mm 1kNm = 10° Nmm

1 rad/m = 10° mrad/mm

Working with other unit systems and other miscellaneous quantities

1 foot = 12 inches linch=25.4mm

9.81 m/s?= 32.2 feet/s?

1 cubit = 18 inches 1 foot = 304.8 mm

1yard =3 feet L mile=1609m LkNm = 0.738 kip ft
1 chain = 22 yards 1 ha = 2.47 acres 1kNm =8.85kipin

1 furlong = 10 chains
1hp =746 Watt
1 mile = 8 furlongs 1kg=2.20 Ibs P @
1 mile = 1,760 yards 1 stone =14.0 Ibs

1km/h=0.278 m/s

1km/h =0.621 miles/h

1 acre = 10 square chains 1 Ibs/ ft* = 16.02 kg/ m*

1 knot = 1.852 km/h

1 square mile = 640 acres 100 Ibs/ft® = 15.72 kN/m?®

1 MPa = 145.0 psi
1 ha=10,000 square m

1 kNJm? = 20.9 Ibs/ft?
1N =0.225 Ibs (force) m

1 kip = 4.45 kN
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Thus, the tension carried by a wire remains constant as it goes around a frictionless pulley. The pulley only serves to
redirect the tension force carried by the wire.

)

T
Fig. 2.10 — Free body diagram of an ideal pulley.

Dimensions and Units
In engineering, calculations are done using physical quantities which have units. In order to carry out these calculations
correctly, it is necessary to become comfortable working with units and converting between them as needed.

It is important to distinguish between dimensions and units. Dimensions refer to the measurable physical quantities
which describe a property — for example, the dimension of velocity is distance/time. Units are the means to describe
dimensions according to some sort of standard reference. Using our example from before, common units used to
measure velocity are metres per second (m/s) or kilometres per hour (km/h).

When performing calculations with physical properties, note the following rules:
1. Two quantities which are added together or subtracted from one other must have the same units

2. Quantities which are multiplied together or divided from each other will have their units multiplied or divided
accordingly. For example, a velocity in m/s multiplied by a time in s will result in a distance in units of m.

In engineering, having a sense of what each unit means is necessary to interpret the correctness of a calculation and
avoid unrealistic answers. Measurements of length and area are the most intuitive because of our experience working
with objects and space in the real world. Units for weight and pressure are generally more difficult to visualize, but
can still be interpreted using the following simple examples:

* 1 Nisapproximately the weight of a small apple
e« 1kN is approximately the weight of a football player
* 1 MPais approximately the pressure applied to a notebook carrying the weight of an African bush elephant

Table 2.1 contains a list of common conversions which will occur in the course, and is reproduced in Appendix E.

Note: In CIV102, calculations will primarily be done using
units of N or kN for forces, mm or mm? for geometric
properties, MPa for stresses and kNm for bending moments.
Calculations can be consistently done by working exclusively
with units of mm, N and MPa.

CIV102H1F CIV102 Course Notes

September 2021

Lecture 3 — Building Bridges

Overview

In this chapter, the history of bridges is briefly discussed before the topic of suspension bridges is examined in more
detail. The mechanics of how cable structures carry load is explained by using the concepts covered in Lecture 2.

Building Bridges

Bridges are structures which cross over obstacles such as rivers, roads, or cliffs and hence connect two locations which
would otherwise be separated. The earliest bridges were used to cross over rivers and were built by simply felling a
large tree and positioning the trunk over the water to span the distance between the two banks. More elaborate bridges
were used by the Romans, who crossed over larger rivers by driving wood pieces into the riverbed and using them to
support the longer deck, like the bridge shown in Fig. 3.1. Some examples of modern types of bridges are truss bridges,
which consist of steel or timber pieces arranged in a lattice-like configuration, suspension bridges, which use steel
cables to support a deck over long distances, and arch bridges built from stone or reinforced concrete. Many bridge
systems will be introduced and discussed in further detail throughout the course, beginning with suspension bridges
in this lecture.

Suspension Bridges

Suspension bridges, like the bridge designed by Thomas Telford shown in Fig. 3.2, use long cables carrying tension
forces to support the bridge deck over significant distances. Improvements in construction methods and the increasing
quality of steel cables has meant that many of the longest bridges in the world today are suspension bridges. Despite
these advancements, the underlying mechanics of how these structures work remains grounded in the basic principles
covered in the previous chapter.

o aian - s |
Fig. 3.2 — Thomas Telford’s Wrought-Iron Suspension Bridge across the Menai Straits, in Wales.
The bridge, opened in 1826, has a 177 m span.

Cable Forces in Suspension Bridges

For cable structures which carry hanging loads, the shape of the cables depends on how the loads are distributed. A
cable which is not carrying any load besides its own self-weight is shown in Fig. 3.3. The shape that the cable assumes
in this situation is called a catenary. Accounting for this special shape can be important when designing cable

Caesar's Bridge Over the Rhine

Fig. 3.1 — Caesar’s Bridge over the Rhine.

12
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structures whose loading is dominated by the self-weight of the cables. A common example of such structures are
power lines used to transmit electricity over long distances.

/ Catenary

Fig. 3.3 — A hanging cable forming the shape of a catenary under its own weight.

When a load which is significant compared to the self-weight of the cable is hung at the midspan, the cable will change
shape to form two straight lines. Having three weights will result in four straight lines, five weights will result in six
straight lines, and so on. This progression is shown in Fig. 3.4, which shows how the shape of a hanging cable changes
as the number of weights hung from it increase from one, to three, to five. Although the shape of the cable remains
piecewise linear, the straight segments begin to approximate a smooth curve as the number of weights is increased. If
the weights remain constant in value and the spacing between them approaches zero, the load i: to be uniformly
distributed along the length of the structure. When this happens, the slope of the cable will vary linearly along the
span and hence assume the shape of a parabola.

U
\/v Piiip
i P P

P
»

Fig. 3.4 — Change in cable shape as weights are added.

The tension in the cable at any location along the span can be determined by drawing a free body diagram. This is
done by drawing the free body diagram so that its boundary cuts through the structure at the location of interest.
Because the original structure was in equilibrium, the resulting substructures are also in equilibrium, and hence the
three equations of equilibrium must be satisfied for each free body diagram. This is illustrated in Fig. 3.5, which
investigates the tension in the cable between the first and second loads from the left by separating the structure at this
location. Since the left and right substructures must both be in equilibrium, either free body diagram may be used to
solve for the unknown tension in the wire, which has a vertical component of 3/2P.

Note: Although the shape of a cable under its own weight (a
catenary) and a cable supporting a uniformly distributed
load (a parabola) appear similar, the shapes are subtly
different because of the differences in the loading. For a
freely hanging cable, the load per unit length of the cable is
constant, whereas for a cable supporting a uniform load, the
load per unit length of the span is constant. Because the
cable follows a curved profile, the self-weight of the cable is
not constant along the length of the span, which results in the
shape of the catenary.

Note: When drawing a free body diagram by cutting through
a member, the internal forces which were carried by the
member at the cut must be drawn onto the resulting free body
diagram. This is because the internal forces are necessary
for satisfying equilibrium of the structure at that point.
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Lecture 4 — Design of a Suspension Bridge

Overview

In this chapter, the equations of equilibrium are used to derive the cable forces in a uniformly loaded suspension
bridge. The use of the resulting design equations is then illustrated using the Golden Gate Bridge as a real-life example

Analysis of Suspension Bridges

Consider the suspension bridge shown in elevation view in Fig. 4.1 which has a span L and a drape h. The main cables
support the loads carried by the deck, which is attached to the main cables using secondary hanger cables. The bridge
supports a uniformly distributed load w which has units of force per unit length (i.e., kN/m). By examining a free body
diagram of the whole structure, the vertical reaction forces provided by the towers at the ends of the bridge can be
found by considering vertical and rotational equilibrium about the centre of the bridge:

L
z Muidspan = 0 = =Ry, X (E) + Rpy X (

=0 Ryy+Re, —wL =0 (4.1)

(4.2)

Tower

Deck supporting a
o uniform load of w kNim Ry

Fig. 4.1 - Elevation (side) view of a suspension bridge.

Equations (4.1) and (4.2) form a system of two equations and two unknowns, which are the reaction forces RLy and
Rry. Solving for the two unknowns leads to the conclusion that each support resists half of the total load carried by
the bridge:

wL
Riy=Rpy=— (43)
Using this information, the equations of equilibrium can now be used to learn more about the forces in the cables
between the supporting towers. Consider the free body diagram of half of the bridge, taken from the left support to
the midspan, which is shown in Fig. 4.2.

Span: the horizontal distance between the two supports of a
bridge.

Drape: The vertical distance between the highest and lowest
points of the supporting cable.

Reaction Force: The force provided by a support in order to
keep the structure in equilibrium.

Note: The result shown in Eq. (4.3) was rigorously proven
using the equations of equilibrium. The same result could
have been obtained by considering symmetry of the system.
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Free Body Diagram A Free Body Diagram B

Fig. 3.5 — Analysis of tensile forces in a cable structure.

If a series of free body diagrams are drawn, like in Fig. 3.6, the variation in the tension force in the cable can be
determined. Due to symmetry, only three free body diagrams need to be drawn to solve for the forces in the six straight
segments of the structure, which are the forces at locations A, B and C.

R, =i R, 1P
_l® -
Ra N ® Re.
T ©
, >
Pl Lo
e

Fig. 3.6 — Calculating the variation of tension force in the cable using free body diagrams.

Determining the vertical component of the tension is a straightforward task if the vertical force carried by the two
supports on the ends is known. They can be found by applying the three equations of equilibrium to a free body
diagram of the whole structure, which results in reaction force of 5/2P on each side in this example. Once these support
forces are known, equilibrium in the vertical direction requires that the vertical component of tension in the cable vary
from a maximum of 5/2 P at the support, to a minimum of 1/2P at the midspan. If the spacing of the weights was
reduced to approach zero, i.e., the load be uniformly distributed, the vertical component of force would reduce linearly {

x

Note: Recall Fig. 2.4 which is reproduced below as Fig. 3.7.
The slope of the force, and hence the cable, is equal to Fy
divided by Fx.

from a maximum at the support to 0 at the midspan.

The horizontal component of force in the cable can be obtained using the other two equations of equilibrium. It should Fy
be noted however that in each of the free body diagrams shown in Fig. 3.6, the horizontal component of tension at the A
location of interest equals horizontal force supplied by the support. This allows us to conclude that the horizontal Fx
component of tension remains constant along the structure.
Fig. 3.7 — Components of a force.
For a cable carrying tension, its inclination is a function of the relative size of its horizontal and vertical components.
Under uniform loading, the vertical component of force in the cable varies linearly along its length while its horizontal
component remains constant. Therefore, the slope of the cable will also vary linearly along its span, which results in
the cable taking the shape of a parabola.
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Note: A distributed force w acting over a length L can be
replaced by an equivalent point load which has the same
magnitude and acts through the centroid of the distributed
load. Some common examples are shown below:

Touppony =2 WL

T

h w (kNim) wil

W kN/m T is equivalent to 1

IERRXERERREREXRARRL]

H

midspan = .L; i ‘.‘r

L2 w (kNim) w
Fig. 4.2 — Analysis of forces in a cable. Note that Trmiaspan has no y-component because the cables are horizontal at /(ﬂ/ﬂ/m is equivalent to 1

midspan.
) S —

Applying the three equations of equilibrium to the free body diagram yields the following results:

DB = 0= Tt + Toiaspn = 0 )
L
Z Fy = 0> Topport,y =W X 7= 0 (4.5)
L L .
M. —0oT xh— ( % ,) x==0 4.6) Note: In Eq. 4.6, the moments are calculated about the top-
z support midspan Y*2) %% 6 left corner of the free body diagram (i.e. at the support). The

. . . results of the derivation would not be affected if the moments
From Eq. (4.4), we can conclude that the horizontal component of tension, H, is constant in the cables. Furthermore,  were instead calculated about any other location.
in Eq. (4.5), the vertical component of tension, V, is highest at the support and reduces to zero at the midspan. These
observations are consistent with the results discussed in the previous chapter. Therefore:

wL
Ty, max = Tsupporey = =5~ 4.7)

Finally, re-arranging for H in Eq. (4.6) yields the following important result:

wl?

=5 (4.8)

Note: The tension in the cables is lowest at the midspan of
the bridge because Ty = 0 there. At this location, the tension
The maximum tension in the cables can be determined by calculating the net force from the vertical and horizontal  in the cable is simply equal to H. Furthermore, the forces

components: discussed in this chapter are the sum of the tensile forces

2 2 wit\?  wi\? carried by each main cable. Because there are usually two
Tonax = (Tx, ,"zx) + (Ty, max) = (W) + (7) (4.9) main cables in a suspension bridge, these forces should be
divided by two when designing each individual cable.
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Fig. 4.3 — Design Calculations for the Golden Gate Bridge.
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Stress has dimensions of force per unit area and is typically described in units of MPa (MN/m? or N/mm?). Because
of this, stress can be thought of as the normalized force per unit area experienced by a material.

Strain is a physical quantity which describes how much a material is being deformed. For a prismatic member with
original length Lo which has elongated by a length Al, like the situation shown in Fig. 5.2, the engineering strain ¢ is
defined as:

e=— (5.3)

J,; Original length, Lo ———# Al

Fig. 5.2 — Terminology used to define strain.

Although strain is dimensionless, it is typically described in units of mm/mm, mm/m or even %. Because of this, strain
can be thought of as the normalized change in length experienced by a material.

The benefits of using stress and strain to describe the forces and deformations in a material, instead of simply using
the force and displacement of a structure, is because it allows the behaviour of structures to be compared even if they
are different sizes. For example, a thin wire will intuitively break at a lower load than a thicker wire, but failure will
occur at the same stress if they are both made from the same material.

Just like how Hooke’s law states that the force and stretch of a spring are related by a constant, the stress felt by a
linear elastic material is proportionately related to its strain by a constant E:

o= Ee (5.4)

E is called the Young’s Modulus, named after the English scientist Thomas Young. It has the same dimensions as
stress and is commonly written in units of MPa. Fig. 5.3 shows the stress-strain relationship for several materials
which have different values of E.

Note that the strains used in Eq. (5.4) are strains which are associated with a material deforming as it tries to carry
stress. Materials may deform for other reasons, and in some circumstances, it may be necessary to distinguish between
the strains associated with stress, and the strains caused by other effects. Some examples of strains which do not cause
stress and should not be used in Eq. (5.4) are thermal strains caused by temperature effects, or shrinkage strains caused
by water loss. Some of these effects are described in later chapters.

Note: The engineering stress and engineering strain are
defined using the undeformed geometry of the member. In
reality, a member’s cross-sectional area and length will
change when it is carrying load. The true stress and true
strain are the corresponding definitions of stress and strain
when the deformed geometry is used instead. Although the
true stress and true strain are more realistic indicators of a
material’s physical state, they cannot be easily measured, so
the engineering definitions are used instead.

Note: Eq. (5.4), which relates the stress and strain in the
material, is sometimes referred to an example of a
constitutive relationship. Because E is a characteristic
property of material which relates stress and strain, it is
sometimes referred to as the material stiffness.
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Lecture 5 — Stress, Strain, Hooke’s Law and Young’s Modulus

Overview

In this chapter, the basics of material behaviour are introduced. Hooke’s law for linear elastic springs is discussed for
simple structures subjected to tension or compression forces. After introducing the concepts of stress and strain, the
Young’s Modulus is introduced for relating the two for linear elastic materials. The spring constant for a member is
demonstrated to be a product of its material stiffness and geometry.

Hooke’s Law

In Robert Hooke's 1678 paper “Explaining the Power of Springing Bodies” he states, “The particles therefore that
compose all bodies I do suppose to owe the greatest part of their sensible or potential extension to a vibrative motion.”
He suggested that the particles might vibrate back and forth one million times a second and protect their natural
space.

After studying the behaviour of materials and springs, Hooke presented his findings as an anagram, “ceiiinossstuv”,
which, when decoded, spells out “ut tensio, sic vis”. This is a Latin phrase which translates to “as the extension, so
the force”. Mathematically, Hooke’s law explains that the restoring force in a spring, F, is proportionate to its change
in length, Al, by a constant k:

F = kAl (5.1)

In Eq. (5.1), the spring stiffness k has units of force per unit length, such as N/mm, and F acts in the opposite direction
as Al. A structure which obeys Hooke’s law is said to be linear elastic.

Hooke’s Law for Linear Elastic Materials — Stress, Strain and Young’s Modulus

The spring constant of a member is affected by its shape and material composition. For example, a thin wire is easier
to stretch than a thick wire made from the same material, and a rope made from a stiff material like steel is more
difficult to stretch than a similarly shaped rope made from a softer material like plant fibre. To understand how the
geometry of a member and its material properties contribute individually to the overall stiffness, we will introduce the
concepts of stress and strain.

Stress is a physical quantity which describes the internal forces acting on a material. For a force F which is carried by
a prismatic member with an undeformed cross-sectional area A, like the situation shown in Fig. 5.1, the engineering
stress o is defined as:

o=k (52)

P Force, P
— —

Area, A

Fig. 5.1 - Terminology used to define stress.

Note: Although Hooke’s law refers to the behaviour of
springs, it is applicable to any structure which is subjected
to direct tension or compression, such as a cable or a
column.

Note: Because F and Al are defined as the force and change
in length in the direction of a prismatic member s axis, k is
sometimes referred to as the axial stiffness of a member.

Note: Although the definitions of stress and pressure appear
to be similar, pressures refer to forces which are externally
applied to a body (i.e. pressure applied to a surface),
whereas stresses refer to internal forces which are carried
by a structure (i.e. stress in a cable) or a material (i.e. stress
in steel).
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200 Diamond
E'=1,000,000 MPa

175 Steel
E=200,000 MPa

Aluminum
150 E=73,000 MPa

Granite in Compression
E = 50,000 MP:

Stress (MPa)

Nylon Fibre
E 25,500 MPa

00 05 10 15 20 25 30 35 40
Strain (mm/m)

Fig 5.3 - Typical values of E for various materials.

Expressing k in Terms of Geometry and Material Stiffness

Hooke’s law for linear elastic springs, Eq. (5.1), and its equivalent for linear elastic materials, Eq. (5.4), resemble each
other because they both relate a force-based quantity (F or ¢) and a displacement-based quantity (Al or €) by a stiffness-
based quantity (k or E). Fig. 5.4 shows how these quantities are related to each other for linear elastic structures
subjected to axial load:

Force-like quantities Stiffness-like quantities Deformation-like quantities

Axial Stiffness, k
[Nimm]

Displacement, 4/
[mm]

Forces, F

Structures
[N]

Young’s Modulus, £

Materials Stress, & [MPa] Strain, &
[MPa] [mm/mm]
Fig. 5.4 — Relationships between structures and materials.
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If the geometric properties A and Lo, and material stiffness E, are known, then k for a member can be calculated by
combining equations (5.2) to (5.4) and isolating for F and Al. This results in the following relationship:

Pty =2 5.5
= Al k=—
L L (5.5)

Therefore, the axial stiffness of a member k is proportionate to its cross-sectional area A and material stiffness E, and
inversely proportionate to its length Lo.

Note: k will have units of N/mm if A is in mm?, E is in MPa
and Lo is in mm.
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Fig. 6.2 — Stress-strain curve of mild steel in tension

The concept of ductility has several definitions, but generally refers to much a material can be deformed before it
breaks. On a stress-strain curve, this refers to the largest strain a material can carry before fracturing. Materials which
can sustain significant amounts of permanent deformation before failing are generally referred to as being ductile,
while those which cannot are referred to as being brittle.

The slope of the linear elastic region of the stress-strain curve of a material is the Young’s Modulus, E. Materials
which have a large Young’s Modulus are generally referred to being stiff, while those with a small Young’s Modulus
are called flexible. Many materials such as steel tend to follow the slope of the linear elastic region when they are
unloaded or reloaded, even after permanent deformations have occurred.

The complete stress-strain behaviour of mild steel (sometimes referred to as low-allow steel) can be roughly described
as having three phases. For small strains, steel behaves in a linear elastic manner, and hence the stress and strain are
related by the Young’s Modulus. Once the stress reaches the yield stress, the material exhibits plastic behaviour along
its yield plateau. For even larger strains, the stress-strain relationship is nonlinear, with some strengthening due to
strain hardening, followed by softening as necking begins.

Strain Energy:

Strain energy is the energy stored in a structure or material as it is deformed. The strain energy W is defined as the
area underneath the force-displacement curve of a structure, which is mathematically represented as:

w= deA] (6.1)

Strain Hardening: the phenomenon where a material gains
strength and stiffness when strained beyond its yield point.

Necking: the phenomenon where localization of tensile
strains in a material causes the cross-sectional area to
become noticeably smaller at one location causing it to
resemble the shape of a neck. Usually precedes failure.

Note: Deformations accumulated when a material is no
longer behaving in a linear elastic manner tend to be
permanent for many materials. These non-recoverable
deformations are sometimes referred to as plastic
deformations to contrast with the recoverable elastic
deformations.

Note: Eq. (6.1) is the integral of the force carried by the
structure over the change in length it has experienced.
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Lecture 6 — Stress-Strain Response, Resilience, Toughness & Ductility

Overview

In this chapter, key material properties which are used in the design of structures are discussed. The complete stress-
strain relationship for mild steel, a common material used in many steel and reinforced concrete structures, is
presented.

Generalized Stress-Strain Behaviour

As materials are loaded to failure, they generally do not exhibit linear elastic behaviour for their entire life. Gradual
accumulation of damage to the microstructure of the material and other material-specific internal effects cause the
stress-strain curve to be nonlinear in general. Even materials which look and feel similar may have very different
stress-strain properties. For example, Fig. 6.1 shows the stress-strain behaviour of three different types of steel whose
stress-strain behaviour differs greatly due to the amount of carbon present.

stress (ksi)

strain (%)

Fig. 6.1 — Stress-strain behaviour of different types of steel.

To describe key features of a material’s stress-strain curve, engineers have defined material properties which serve
as useful tools for evaluating and comparing different materials. Common aspects which are described by material
properties include a material’s weight, strength, stiffness, ductility and energy absorption capabilities. Fig 6.2, which
shows the stress-strain curve of mild steel, illustrates many of the various material properties which are described
below:

The strength of a material describes how much stress it can carry before failure occurs. Multiple definitions of strength
exist to recognize the various stages of failure which a material experiences as it is loaded. The yield strength is
defined as the stress which causes yielding to occur. The ultimate strength is defined as the largest stress which the
material can carry before failure. Note that the strength of many materials in tension is different from their strength in
compression.

Yielding: the state when a material, usually metals, begins
to ac permanent ions. When yielding
begins, the strain will continue to increase even if the stress
is held constant. The portion of the stress-strain curve which
exhibits this behaviour is sometimes referred to as the yield
plateau.
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When a structure is loaded while it is behaving in a linear elastic manner, the area underneath the force-displacement
curve will be a triangle. Thus, the strain energy for a material with axial stiffness k which has been elongated by Al
from its original length is calculated as:

1 1
W = ZFal= S k(8)? (6.2)

The area underneath the stress-strain curve of a material also represents an energy-based quantity, which is the strain
energy density U:

u :fade (6.3)

U can be thought of as the energy stored in the material per unit volume and is typically expressed using units of
MJ/m?. The strain energy density, U, is related to the strain energy, W, by the following equation:

wW=U-V, (6.4)

Where Vs is the original volume of the member before it has been deformed. When a material is behaving in a linear
elastic manner, the area underneath the stress-strain curve is a triangle, which results in an alternative equation for the
strain energy W if Eq. (6.3) and (6.4) are combined:

1
w= fads Y, = EJEVV (6.5)

Having defined the strain energy, we can now define the resilience and toughness of a material. The maximum amount
of energy which a structure or material can absorb before it exhibits permanent deformations is defined as its
resilience. The resilience of a material is calculated as the area under the stress-strain curve in the linear-elastic region.
The toughness of a structure or material is a measure of how much energy it can absorb before breaking. The toughness
of a material is hence defined as the area underneath the complete stress-strain curve.

Thermal Expansion

Materials tend to expand when heated and contract when cooled; the rate at which this occurs is a unique property of
every material. The thermal strains experienced by a material, &, are related to the change in temperature AT by the
coefficient of thermal expansion a according to the following equation:

& = alAT (6.6)
For example, if a 1200 mm long rod made of low alloy steel, which has o = 12x10° /°C, was heated by 30°C, then it
would experience a thermal strain of (12x10) x (30) = + 0.00036 mm/mm. This corresponds to an elongation of
0.432 mm. Thermal strains can be significant for large structures — for example, large suspension bridges can change
length by a few metres under large variations in temperature.

A table of useful material properties for many materials is found below, and is also reproduced in Appendix A.

Note: The strain energy density has units of MJ/m? if the
stress and strain are in units of MPa and mm/mm
respectively. This is because 1 MPa = IMN/m? = IMNm/m?
=1MImd.

Note: For a prismatic member, the undeformed volume V,
can be expressed as the product of the undeformed length Lo
and the cross-sectional area A. Eq. (6.5) can then be
rewritten as:

1
w= EUSALG

W will have units of J if o is in MPa, ¢ is in mm/mm, A is in
mm? and Lo is in m.

Note: If a member is free to expand or contract, then thermal
strains do not lead to stresses developing in the material.
However, if there is some sort of restraint which prevents it
from changing sizes, then stresses will begin to develop, and
the material may fail. One example of where this can happen
is if a glass container with water inside is placed in a freezer.
Under the cooler temperature, the container shrinks around
the water, which is instead expanding as it freezes. Because
the ice is preventing the glass from contracting, stresses
begin to accumulate in the glass, and it may shatter.
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Table 6.1 — Common Material Properties
Average Properties of Some Typical Materials  Note that except for density, iiffness and coefficient of thermal expansion, all values have a considerable range
inoss | Tensie Strength ity
Mot | ot | %% | )™ (G st VS B 0ot Comment
MPa) | Vielg [Utimate| _(MPa) tens Jcomp. | Plastic/Elastic
Low Aloy Steel | _77_| 200,000 | 420 | 560 | 420 042 135 250021 T2_[060| _Used in buidings, brdges, cars, olc
High Tensile Steel | 77 | 200,000 | 1650 | 1860 | 1650 68 55 41083 12 [150 Wire ropes, cables
High Alloy Steel | 77 | 200,000 | 700 | 800 | 700 122 200 25035 | 12 [200 Pressure Vessels and tanks
Plano Wire 77200000 - | 3000 - 2 22 | 02150 | 12 | 150 Brtle maleria. ot used in siructures
Gastiron 70_[150000] - | 110 | 770 00s_| 006k 07 1|05 Tradilonal cast iron, moulded
Wrought ron 5185000 200 | 350 | 200 011 o 300,11 2 |1 99% pure iron, hammered. fiorous
‘Aluminum 7 69,000 | 40 | 80 ) 0012 1 400006 180 |_Light, ductile, non-corrosive. soft metal
Aluminum Aloy | 27| 73000 | 470 | 580 | 500 151 11064 4|2 Used for cances, aicraf, elc
Copper 8124000 70 | 230 | 200 002 £ 550006 0 |7, Vory ductie metal - rounded curve
Bronze 9 [105000] 200 | 390 | 3% 02 4 120,19 72 Tin + copper alloy - stronger
Goid 789 | 82000 | 40 | 220 | 180 001 50 50005 | 14 | 40k Hoavy, oxpensive metal
Granie 2% | 5200 | - | 11 140 0001 | 001026 | 0002 8_[0.15 Strongest and most durable buiding stone.
Limestone 25 8000 | - | 8 ) 00006 | 0011009 | 01001 6 [003 Soft, useful buiding store
Siate 2 | 95000 | - | 60 100 0019 | 0.0200.10 | 0006 0.08 | Siraified rock with high tensil strengih
Brick 19| 20000 | - 3 2 00002 | 0011003 | 0001 s |00 Fired clay
Concrele 20 3000 - | 3 3 0002 | 001010 | 0001 9 [0.12] _Mixture of cement, sand, stone, water
Glass 27 69000 | - | 100 | 200 0072 | oomos | _onds 20 [150 Soldifed lquid sand
Oak 75 | 14000 | 75 | 90 ) 025 | 0325 | 05047 | 3 |32 ] _ Stong. tough, heavy hardwood
Spruce 44 11000 [ 55 | 70 50 019 | o222 | o0s050 | 7 |20 Light,strong. durable softwood
Tendon 70 | o0 | 70 | 8 B 27 4 [ - Used as tension ties in mammals
Bone 20 | 17000 | 150 | 180 | 180 066 1 0509 Used as sirus and beams in mammals
Rubber 92 | 7 — | 2 2 15 2 4300 | 500 | 20 | Strange, usoful material —low stifness
Spider's Sik 10 | 4000 | - | 1400 - 160 170 | 1035 - Most resilient material
Carbon Fibre | 15| 160000 - | 1800 - 10 10 [XLE] 50.0| Carbon fiore composites used In aircraft
Nylon Fibre 11| 5500 | - | %00 - 7 7 2116 80 [800|  Excellentf sifiness not required
KeviarFibre | 14 130000 | - | 3600 - 50 60 | 127 [50.00  Super materialin many ways
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Free body diagram A in Fig. 7.2 shows the forces applied to the mass if its acceleration and displacement are both
acting downwards (positive). The forces which resist this motion are the inertial force, Fi(t) and the spring force Fs(t).
As these are the only forces acting on the body, the two forces sum to zero, which produces the following equation:

Fi®) + Fi(t) = 0 - ma(t) + kx(t) = 0 (7.1)

The acceleration a(t) is defined as the second derivative of the displacement x(t) with respect to time. This allows Eq.
(7.1) to be written as just a function of x(t) and its derivatives:
d?x(t)
m dac?

+kx(t) = 0 (7.2)

Eq. (7.2) can be solved by assuming an answer for x(t), and then verifying that our assumed function satisfies the
differential equation. Consider the following function which is a sinusoid with amplitude of vibration A, angular
frequency on, and phase shift ¢:

x(t) = Asin(w,t + ¢) (7.3)
The second derivative of x(t) with respect to time is then:

d?x(t)
dt?

= —Aw? sin(w,t + ¢) (7.4)

Substituting Eq. (7.3) and (7.4) into Eq. (7.2) and simplifying yields the following requirement for wn:

o= | 7.5

The frequency of vibration of the spring-mass system when it is freely vibrating is related to the stiffness of system k
and its mass m but is independent of other factors such as the amplitude of vibration and the initial disturbance. en,
is commonly referred to as the natural frequency of the system because it represents how quickly the system oscillates
under free vibration and is purely defined by the system’s inherent mechanical properties k and m. Stiffer systems,
which have a large value of k, will hence have a high natural frequency and will vibrate quickly. On the other hand,
systems with a higher mass have more inertia and will vibrate more slowly.

The natural frequency expressed in terms of cycles per second (hz), fn, and the natural period, Tn, can be defined as:

=2 |m (7.6)

Note: When the mass is vibrating, the inertial force is its
resistance to being accelerated. Using Newton's second law,
Fi =ma(t).

Note: Eq. (7.2) is called a differential equation because it
relates a function, x(t), to one or more of its derivatives.
Solving a differential equation means obtaining the unknown
function x(t). In this case, the acceleration a(t) is related to
x(t) by:

d?x(t)

a®) ==

Differential equations such as Eq. (7.2) have a useful
property called uniqueness. This means that if a function x(t)
satisfies the equation, and other conditions, then it is the only
correct solution. The existence and uniqueness of solutions
to differential equations is discussed further in more
advanced calculus courses.

Note: wn has units of rad/s. Expressing the natural frequency
in units of cycles per second requires converting wy to f,
using Eq. (7.6).

Note: the period T is the time elapsed as one full cycle takes
place.
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Lecture 7 — “Explaining the Power of Springing Bodies”
Overview

Structures may vibrate when subjected to loads which move, or when disturbed from their equilibrium position. In
this chapter, the basic behaviour of spring-mass systems under free vibration is introduced.

Free Vibration of Spring-Mass Systems

So far, we have primarily considered systems which are in a state of equilibrium and hence do not accelerate. However,
structures will generally accelerate when subjected to time-varying loads or when disturbed from their equilibrium
position. Consider the simplest case which was investigated by Hooke (shown in Fig. 7.1), which is a spring carrying
amass. Fig. 7.2, which illustrates his experiment in more detail, shows a linear elastic spring with a stiffness k attached
to a mass m. The mass is considered to be significantly larger than the mass of the spring, which can be considered as
weightless. For simplicity, the system will be analyzed without considering gravity, which will be re-introduced later
in the chapter.

Suppose the mass m is pulled downwards from its resting position and then released. The mass will then vibrate up
and down before eventually returning to its resting position. This is called free vibration and would theoretically
continue forever were it not for factors such as air resistance and internal friction which eventually bring the vibration
to a stop. The vertical position of the mass relative to its original location can be mathematically described using the
time-varying function x(t), and its vertical acceleration as it vibrates can be defined using another time-varying
function a(t). Note that the displacement x(t) is measured from the undeformed length of the spring and x(t) and a(t)
are positive in the downwards direction.

V.

Stiffness, k ————=

F(= mamT T Fil) = )

]

Free body diagram A

Acceleration, a(t)

Fig. 7.2 — Analysis of a vibrating spring-mass system.
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Fig. 7.1 — Excerpt from Robert Hooke’s 1678 paper
“Explaining the Power of Springing Bodies”.
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Ty = ! =2 F 7.7
[N (7.7)
Note that when solving Eq. (7.2), we have not determined the values of the amplitude of vibration A or the phase shift ~ Note: Solving for A.and ¢ using the initial conditions, x, and
¢. These parameters can be solved if the di 1t and ion corr ing to t = 0 are known (i.e., x(t=0) 8 Will not be required in CIV102.

= X, and a(t=0) = a, respectively). X, and a, are referred to as initial conditions.

Consideration of Gravity
Although we neglected the presence of gravity when defining and solving Eq. (7.2), consider the effect of adding the
gravitational force, which acts downwards, to the free body diagram in Fig. 7.2. The sum of forces can then be written
as:

Fi(t) + F(t) = Fy =mg (7.8)

Introducing the

X(t) and the ion a(t) results in a slightly modified version of Eq. (7.2):

d? x(t)

m + kx(t) =mg (7.9)
Again, this can be solved using a sinusoidal function. However, the mass will now oscillate around a value of x = A,
instead of x = 0:

x(t) = Asin(w,t + @) + A, (7.10)

Substituting Eq. (7.10) into Eq. (7.9) results in the same equation for en as before and produces the following condition
for Ao:
kA, =mg (7.11)

Therefore, the system does not oscillate about the undeformed length of the wire when gravity is present. Instead, it
oscillates about the resting position under the weight of the mass, which is A, the elongation of the spring due to the
gravitational force. The inclusion of gravity does not influence the frequency of vibration, and hence our equations
for @n, faand Tn are still valid.

A plot of the position of the mass over time, x(t), is shown in Fig. 7.3. When reading the plot, note that downwards
displacements are taken as positive (as defined in Fig. 7.2).
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Natural Period, Tn

Vertical Displacement, x

Amplitude, A\

x(t

in(wt + ) + 8
Time, t

Fig. 7.3 — Displacement of a spring-mass system under free vibration.
Other Methods for Calculating @n
The natural frequency fn is an important parameter as it allows us to determine if a structure is susceptible to time-
varying loads. Although Eq. (7.6) can be used to calculate it, determining the stiffness k can be difficult if the structure
has a complex geometry. A more convenient approach is to instead define the natural frequency in terms of the vertical
displacement of the structure under gravity loads. This can be done by re-arranging Eq. (7.11) to express k in terms
of Ao:

k=29 (7.12)

Substituting Eq. (7.12) into Eq. (7.6) results in the following expression for fn:

_ 1 mg 1 _1 /g
f”_Zﬂ A, m 2w |b, 7.13)

If the acceleration due to gravity is taken as 9,810 mm/s? and Ao is in units of mm, then fn can be calculated as:

_ 1 [9810 1576
"2 A, B,

(7.14)

Thus, the natural frequency can be conveniently calculated for a structure if its static displacement, Ao is known.

Note: The response of structures under time-varying or
dynamic loads is discussed in Lecture 19.

Note: Eq. (7.14) requires A, to be in units of mm, otherwise
the resulting answer will be incorrect.

29

CIV102H1F CIV102 Course Notes

September 2021

Odemang.av  Gcapacty. av
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\

Stress from loads Guemans

Failure may occur if
temand = Teapaciy

Stress, 0
Fig. 8.1 — A comparison of applied stresses vs. the strength of the material. Although the average demand is less
than the average capacity, there is substantial overlap between the two curves where failure occurs.

Factors of Safety

To account for the uncertainty in the loads and strength of the materials, the concept of a factor of safety (FOS) is
used in engineering design. The factor of safety is a measure of the capacity in the system relative to its demand. In
structural engineering, the capacity refers to the strength of the materials and the demand refers to the stresses caused
by applied loads. If the factor of safety is less than 1.0, then the demand exceeds the capacity and failure occurs.

Capacity
FOS = ———— 8.2
Demand 62

In practice, factors are safety are employed to reduce the permissible demand in order to reduce the likelihood of

failure occurring to an acceptable level. This is known as working stress design, in which the maximum allowable
stress in the structure, oaiiow, is calculated as:

Ofail
Gatow = T (83)

In Eq. (8.3), orail is the stress which causes the structure to fail. The benefit of using factors of safety is illustrated
when comparing Fig. 8.2, shown on the following page, to Fig. 8.1. By employing a factor of safety to limit the stress

permitted in the structure to be aaiow, the area where the two curves overlap has been significantly reduced, which
reduces the likelihood of a failure taking place.

Note: Failure is not a straightforward concept to define, as
it depends on the criteria used to determine what constitutes
failure. Common metrics used to define failure include when
the material begins to experience permanent deformations (o
= oyielt), when the material breaks (¢ = aur), or when the
deformations of a structure exceed an acceptable value (A
> Anax).

Note: Values of the factor of safety are chosen in order to
limit the probability of failure to be less than an acceptable
value. Using working stress design, the factor of safety
depends both on the quality of the material and the danger
of the failure mode in question. Larger factors of safety are
employed against failure mechanisms which are sudden and
cause more catastrophic consequences.
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Lecture 8 — Factors of Safety: Dead vs. Live Load, Brittle vs. Tough

Overview

Although previous lectures have introduced the necessary tools to design structures in idealized conditions,
uncertainties in the expected loads on the structure and the strength of the materials used must be considered to avoid
failure. This lecture describes the concept of working stress design, which employs factors of safety to carry out design
safely.

Dead and Live Loads
When designing structures to safely carry loads, it is common to distinguish between the different kinds of loads which
can be expected. In CIV102, we will primarily focus on dead loads and live loads.

Dead loads are loads which remain constant over the lifetime of the structure. Examples of dead load include the self-
weight of the structure and the self-weight of nonstructural components which are attached to the structure (sometimes
referred to as superimposed dead loads).

Live loads are loads which vary over time and are primarily attributed to the use of the structure by people. Examples
of live loads include the weight of a crowd of people, the weight of vehicular traffic on a bridge, or the weight of
objects which are not permanently attached to the structure such as furniture. The weight of a tightly packed crowd of
people is a significant live load, which has traditionally been approximated as 100 Ibs per square foot, which converts
to a load of about 5 kPa.

Other types of loads which are commonly considered when designing structures include wind loads, snow loads, and
earthquake loads.

Structural Failure
Failure occurs when the stresses in the structure caused by the applied loads, cdemand, equals or exceed the strength of
the materials, Geapacity:

Odemand = Ocapacity (8.1)

Although this concept is relatively straightforward, consideration must be made to account for uncertainty in the loads, ~Note: The region where the two curves overlap does not
as well as uncertainty in the strengths of the materials used to build the structure. A dangerous situation may occur if ~ represent the probability of failure.

the loads are higher than expected and/or the strength of the materials is lower than specified. This variation in the

capacity and demand is illustrated in Fig. 8.1, where the two curves represent the probability distributions of the

demand (red) and capacity (blue). The height of the curves represents the likelihood of the capacity or demand being

a certain value.

Fig. 8.1 describes a situation where the expected capacity exceeds the expected demand on average. However, there
is substantial overlap between the two curves due to the variability in the both the applied loads and the strength of
the materials. The overlap, while not the probability of failure, nonetheless suggests that there is a reasonable chance
that Eqg. (8.1), our failure condition, may be satisfied. Therefore, simply designing so that the expected strength is on
average higher than the expected demand is not a sufficient method to ensure that the resulting structure is safe.
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William Macquorn Rankine of the University ¢
about Factors of Safety in his classic “Manual of
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Fig. 8.2 — Reduced likelihood of failure by employing a factor of safety.

Examples of Safety Factors in Engineering Design:

Fig. 8.3 shows some suggested values for factors of safety as recommended by William Rankine, as well as the actual
factors of safety used in the Brooklyn Bridge, the Golden Gate Bridge, and more recently the Akashi Kaikyo Bridge.
The factors of safety suggested by Rankine are very large (up to 10!) compared to those employed in modern design,
which are typically around 2.0. This is due to advances in design/construction practices and improvements in
predicting the loads which structures may be subjected to over their lifetime.

Compretsing

the 27571
!

Fig. 8.3 — Suggested values of safety factors and historic
values of safety factors used in suspension bridges

© G -€ responce
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Fig. 8.4 — Stress-strain characteristics of steel used in the main cables of the Golden Gate Bridge.
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Lecture 9 — Weight a Moment! What is 1?

Overview:

In the previous chapters, we have discussed the basic equations for stress and strain which are sufficient for studying
members subjected to direct tension. However, they are inadequate for describing the behaviour of members which
bend when carrying bending moments or when buckling under compression forces. In this chapter, the fundamentals
of rotational motion are discussed. Although structures rarely experience significant rotations, the concepts used to
describe rotational motion are analogous to those needed to explain the behaviour of structures when they bend.

Relating a Moment to the Angular Acceleration of a Point Mass

Consider the system shown in Fig. 9.1, which shows a point mass m attached to a pivot point by means of a weightless,
rid rod with length y. If a pure moment M is applied to the system, the mass will spin around the axis of rotation with
an angular acceleration of a radians per second squared.

angular acceleration, « rad/s®

point mass, m

- weightiess, rigid rod

Q

applied moment, M

Fig. 9.1 — Point mass rotating as a result of an applied moment.
The relationship between the moment and the angular acceleration can be determined by considering the effective
translational force applied to the mass and the corresponding translational acceleration. Recall from Lecture 2 that a
moment is the product of a force, F, and a perpendicular distance to a reference point, which is referred to here as y:
M=Fy 9.1)

The translational acceleration of the mass, a, is related to the angular acceleration, a, in the same way that the length
of a circular arc is equal to the product of the radius and the angle traversed:

a=ay ©2)

Now that the force and acceleration are known, they can be related to each other using Newton’s second law of motion,
which is F = mxa. This allows Eq. (9.1) and (9.2) to be combined:

M =Fy = (may)y = may* 9.3)

Note: the distance used for rotational motion, taken here as
y, is often taken as r in other courses.
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which in turn reduces the size of the individual point masses. If we take the limit as Am; approaches zero, then the
summation can be instead replaced by an integral and Im can be calculated exactly:

Iy = lim ZA"IL,V.'Z = f y2dm (9.8)
m—0 M

Eq. (9.8) is the definition of the moment of inertia for a finite body, which is the sum of the moments of inertia
contributed by the infinitesimally small point masses dm over the entire mass M.

In the special case where the body under consideration is a two-dimensional object having a uniform density with
dimensions of mass per area, then dm can be written as the product of the density p and a differential area dA:

dm = pdA (9.9)

Equations (9.8) and (9.9) can hence be combined to produce the following result:

Iy = f yidm = pJ’ y2dA (9.10)
M A

The moment of inertia is thus the product of the density of the material multiplied by an integral term which consists
of purely geometric properties. The integral term is known as the second moment of area, I, which has dimensions of
length®.

I= J y2dA 9.11)
A

Physical Interpretation of the Moment of Inertia:
By examining Eq. (9.6) to Eq. (9.8), the following properties can be understood about the moment of inertia, Im. These
properties are also true for the second moment of area, 1, if the references to mass instead refer to area.

1. Imdepends on the location and orientation of the axis of rotation, as this affects the term yi.
2. Masses which are located further away from axis of rotation tend to have a larger contribution to Im compared
to masses which are located closer to the axis of rotation.

To illustrate these properties, consider the steel I-beam shown in Fig. (9.3). Its designation, W530x92, refers to its
nominal height of 530 mm and weight of 92 kilograms per metre of length. The central image in the figure shows the
member being rotated about its y-axis, and the image on the left shows the member being rotated about its x-axis. It
can be seen that the member has a substantially larger second moment of area taken about its x-axis compared to its y-
axis. This is because the majority of its area is distributed far away from the axis of rotation when it is aligned about
its x-axis.

Note: Eq (9.10) is only valid if p does not vary over the area
of the body. If it does, then it must be included inside of the
integral.
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Grouping the mass and length terms produces the following result:

M = (myHa (9.4)

The term my? describes the resistance of the mass to rotation and is analogous to the concept of inertia used in Newton’s
laws of motion. Rewriting Eqg. (9.4) to be applicable to more complex situations than the simple example shown in Fig.
(9.1) results in the fundamental equation of rotational motion:

M= lna 9.5)
In Eq. (9.5), Imis the moment of inertia and has dimensions of mass x length squared.

Defining the moment of inertia, Im
The resistance of a point mass to rotation about an axis is defined as its moment of inertia, Im. For a small object which
has mass mi and is located a distance yi away from the axis of rotation, its individual moment of inertia Im is defined
as:

I = my? (9.6)

Although Eqg. (9.6) allows us to calculate the moment of inertia for a point mass relative to an axis of rotation, how can
we extend it to consider objects whose mass is not distributed at a single point? Consider the body shown in Fig. 9.2
which has been subdivided into many discrete point masses Ami which are each located a distance of yirelative to the
axis of rotation. The moment of inertia of the body is the sum of the moments of inertia of each point mass, Im,, over

the whole body:
In =) i = ) by} ©7)

T body, discretized into

smaller point masses

/ point mass, Am;

Axis of rotation
Fig. 9.2 — Calculation of I, for a two-dimensional body which has been discretized into smaller pieces.

Eq. (9.7) is an approximation for Im, as the value of Im obtained using the equation depends on how finely we have
subdivided the original body. The approximation becomes more accurate as we subdivide the body into smaller pieces,

Note: ¥ is used to denote the summation of terms (typically
over n terms). Eq. (9.3) can be expanded to be:

Z AmyE = Amyyi + Amyyi + -+ Amyyt
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y-axis
¢ D
W53‘Ux92 Rotation about Y-Y axis Rotation about X-X axis
Cross Section 1,y =238 x 10° mm’ o = 552 x 10° mm"*
Fig. 9.3 — Sample values of | for a W530x92 I-beam.
T— b ‘T
Example Calculation of I: Rectangle top:y = +h2
A simple example of applying Eq. (9.11) is to find the second moment of area of a rectangle about its own centroid, dAmbxd
= =bxdy

which is located at its mid-height. We begin the process by expressing a small area of the rectangle, dA, as the product
of the rectangle’s width b and a small thickness dy, as shown in Fig. 9.4.

dA = bdy 9.12)

We can now calculate the second moment of area by substituting Eq. (9.12) into the definition of I and then integrating
over the height of the rectangle, which is fromy = -h/2 toy = h/2:

h

1 B %b((gr - (_;)3) (913)

n

= (" by2dy = Lpys

lfflbydy—?,by
2

Evaluating Eq. (9.13) results in a simple expression for | of a rectangle which is rotating about an axis at its mid-height:

_ bh?

=4 9.14)

Axis of rotation, y = 0

"
N

Fig. 9.4 — Derivation of the second moment of area of a
rectangle about its centroid. Each “slice” of area has a
thickness of dy.

bottom: y = -h/2
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Lecture 10 — Introduction to the Bending of Beams

Overview:

In this lecture, the principles discussed in previous chapters are used to derive equations describing the behaviour of
members which bend.

Fundamental Assumption for Bending: Plane Sections Remain Plane

Consider a series of vertical lines on a beam which are drawn a distance Lo apart. As the beam is bent, it will curve to
form the arc of a circle. These lines will remain straight but will rotate so that on one side of the beam, say the top,
they are slightly further apart, and on the other side, the bottom, they are slightly closer together. At the centroid of
the beam, these lines retain a separation of Lo. This phenomenon was described by Robert Hooke in 1678 using the
phrase “plane sections remain plane” and is illustrated in Fig. 10.1. One way to quantify how much the beam has
bent is to measure the relative angle between two vertical lines, 8, and divide this angle by the original distance
between them, which is Lo. The resulting quantity is called the average curvature. In general, the curvature ¢ is more
rigorously defined as the change of this angle 6 along the length of the member, x.

_do

=— 10.1
=0 10.1)
A property of the curvature is that the quantity 1/¢ is equal to radius of the circle formed by the beam after it has been

curved. This quantity is known as the radius of curvature.

Bending of the member produces strains in the member because the distance between the vertical lines is no longer
equal to the original spacing Loexcept at the centroid. Consider the spacing of points A and B which are drawn on the
beam in Fig. 10.1 and located a distance y above the centroidal axis. After the beam has been bent with a curvature ¢,
the change in angle between A and B is equal to 6as = ¢ x Lo, and the distance between these points and the centre
of the circle will be y + 1/¢. Using this information, the distance between points A and B after the beam has been
curved, Lag’, can be calculated as:

1
Lo = (8L0)- (v + 3) = ovLo + Lo 102)
Using the deformed length, we can now calculate the strain of the member between points A and B which are located
a distance y above the centroidal axis:

Al Ly —L,
£(¥) :T:L 0 (10.3)
o

o

Substituting Eq. (10.2) into Eq. (10.3) yields the fundamental relationship between the strains in the member, &, and
its curvature, ¢:

) = ¢y (10.4)

I- centroidal axis of
cross section

i ,/Radius of
oo /curvature, 114

Fig. 10.1 — Figure illustrating Robert Hooke’s 1678
hypothesis that when members are subjected to pure
bending, “Plane Sections Remain Plane”. The vertical lines
drawn on the side of the member remain straight when it is
curved.
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AM = GEy*AA (10.5)

We can now find the total moment carried by the member by summing the turning effects caused by each piece of
area in the cross section. If we used slices with a nonzero thickness, this will be an approximation of the true moment
because the resulting sum will depend on the size of the slides considered. As the thickness of each slice becomes
infinitesimally small, AA approaches zero and the summation sign is instead replaced with an exact integral:

. 2p4 = 2
M= dlmz(pfy A4 7L BEY2dA (106)

In Eq. (10.6), we can move ¢ out of the integral because the curvature of the member is constant over the cross section
and not a function of A. If the member is made of the same material over the whole cross section, we can also remove
E from the integral, which results in the following expression for M:

M= ¢EL y2dA (10.7)

By examining Eq. (10.7), we recognize that the integral of y? over the area of the cross section is the definition of the
second moment of area, 1, which was introduced in Lecture 9. Substituting this property into the equation yields the
final result:

M=El-¢ (10.8)

In Eq. (10.8), El is the flexural stiffness of the member. Like the axial stiffness k, which was derived in Lecture 5,
the flexural stiffness EI also relates a force-based quantity, the bending moment, to a displacement-based quantity,
the curvature. Similarly, it is a function of both the stiffness of the material, E, and the geometric stiffness provided
by the shape of the cross section, I. This comparison is shown in Fig. 10.4.

Force-like quantities Stiffness-like quantities  Deformation-like quantities

Structures

which Axial Stiffness

Axial Force, F [Nimm] Displacement, 4/
stretch or N [mm]
contract
Flexural Stiffness

Structures 2

;‘f;::‘ Bending Moment, M [Nmm Curvature, ¢

Nmm radimm)
bend [Nmm] [ ]

Fig. 10.4 — A comparison of the axial and flexural stiffnesses of a member.
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The strains in a member subjected to pure bending are not constant over the cross section as was the case for pure
tension. Rather, they vary linearly along the height, from a maximum tensile strain on one side of the member to a
maximum compressive strain on the other. The strain at the height of the centroid, which is the axis about which each
section rotates, is equal to zero. These observations are summarized in Fig. 10.2.

Original Shape )
< P )
Curved Shape

Centroidal Axis Strain, &

©)
= curvature (rad/mm), y = vertical distance from centroidal axis (mm)

Fig. 10.2 — Strain profiles caused by pure bending. Note that for a beam made of a linear elastic material, ¢ = 0 at the
centroidal axis (y = 0).

Flexural Stiffness — Determining the Relationship between Bending Moment and Curvature

When we were studying the behaviour of members subjected to axial force, we were interested in calculating the axial
stiffness of the member, k, which related the tension in the member to its elongation. For members which bend, we
are instead interested in the relationship between the moment carried by a member, M, and its curvature, ¢. Just like
how we used the definitions of stress and strain to derive the axial stiffness of a member, we will do the same to derive
the flexural stiffness based on our assumption that plane sections remain plane.

To begin, we can first determine the stresses in a member which has a curvature ¢ if we know the Young’s modulus
of the material, E:
o =Ee—o(y) =Epy (10.2)

Eq. (10.2) states that like the strains &, the stresses o also vary linearly across the height of the cross section. To
understand how the distribution of stresses is related to the bending moment, consider a thin slice of the cross section

with area AA. The stresses in this slice of the cross-sectional area act uniformly over AA if AA is relatively small,
producing a force AF which can be calculated using our definition of stress:

F
o= n - AF = a(y)AA (10.3)

Because the force AF does not necessarily pass through the centroidal axis of the member, it will produce a turning
effect. The moment AM caused by AF acting a distance y away from the centroidal axis can be calculated using our
definition of a moment:

M=F-d—AM =AF -y (10.4)

Substituting the Eq. (10.2) and (10.3) into (10.4) yields the following expression for AM:

Note: The process of calculating the resulting bending
moment from the linearly varying strains is shown in Fig.
10.3. The flexural stresses, shown in the second figure, act
over a differential area of the cross section, dA, producing a
force dF. These forces, shown in the third figure which shows
a slice of the beam from elevation view, produce a moment
on the left side which equilibrates the applied bending

moment on the right side.
% FQZW g
Conpressin o

1-Gross Secton 2- Flexural Swesses

Fig. 10.3 — Summary of how the bending moment carried
by a member is determined if the distribution of strains is
known from the curvature.

Tension

N
M= fyar

3 Resuting Moment
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Lecture 11 — Statically Determinate Structures

Overview:

Structural engineering is primarily concerned about determining how structures transfer loads from one location to
another. For most civil structures, this involves transmitting vertical loads (i.e. gravity loads) or horizontal loads (i.e.
wind loads or earthquake loads) to the ground. In this chapter, the basics of structural analysis are introduced,
beginning with the determination of reaction forces for statically determinate structures.

Supports

Supports are the elements which hold up the structure and transmit the forces carried by the structure to the ground
below. Examples of supports include bearing pads, foundations, and hinges, which all transmit some degree of force
and/or moment to support the structure and prevent it from accelerating. The forces/moments which are supplied by
supports to hold up the structure are called reaction forces.

Reaction forces are closely related to the level of restraint which a support can provide. For example, a hinge support
which is well-anchored to the ground can prevent an attached structure from moving translationally but will freely
swivel. Hence, a hinge can provide reaction forces which resist translational movement but cannot provide any
moment to prevent rotation. The key principle is that increasing the amount of restraint provided by the support
increases, increases its ability provide a reaction force along that that degree of freedom, and vice-versa.

In structural engineering, we typically define three common types of supports which are called rollers, pins and fixed
ends. Solving any structural engineering problem typically first involves calculating the reaction forces which these
supports provide to the structure. Table 11.1 describes each type of support, its permitted degrees of freedom, and the
support reactions which can be supplied to the attached structure.

Table 11.1 - Types of supports and their reaction forces

Permitted Restrained
Name Symbol Degrees of Degrees of Support Reactions
Freedom Freedom

@:l Ay, Oy Ax=0 3
Fixed end LL; None

Roller

Ax=Ay=0 Fx Fy

Ax=Ay=0y=0 Fx Fy My

Note: A simple example of a hinge support are the hinges
which fasten a door to a door frame. These hinges prevent
the door from translating, but do not provide any resistance
to the door being swung open.

Note: Real supports cannot perfectly restrain a structure like
the idealized pins, rollers and fixed ends described in Table
11.1. Choosing which idealized support best reflects realistic
conditions requires engineering judgement and experience.

Note: The degrees of freedom, when used to refer to
geometric situations such as 2-D space or 3-D space, are the
variables required to describe the position and orientation
of a body. Three degrees of freedom are needed to define a
non-deformable body in 2-D space. These are:

1. Position in the x-direction

2. Position in the y-direction

3. Rotational orientation in the x-y plane
A body which deforms may require more degrees of freedom
to describe its position, orientation, and deformed shape.
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Solving for Reaction Forces — Free Body Diagrams
Solving for the reaction forces requires understanding how the loads carried by the structure are distributed to the
supports on which it sits. Consider the structure shown in Fig. 11.1, which is a beam supported by a pin and roller and

September 2021

Because the system as a whole is in equilibrium, each subsystem will also be in equilibrium, and hence the equilibrium
equations must be satisfied for each free body diagram. As noted in Lecture 3, these equations are:

carrying three masses, my, mz and ms: Z F =0 (11.1)
L [m] [mg| [y . > a12)
F,=0 11.2
2 s
Jr—UA .L U4 i U L L4 ‘J( Z M=0 a3

Fig. 11.1 - Simply supported beam carrying three weights.

A complete understanding how the structure transmits the weight of the three masses to the ground below can be
obtained by drawing a series of free body diagrams. Five free body diagrams can be drawn which each describes the
interaction between an applied load or support and the structure. The sixth free body diagram is of the structure itself
being subjected to the various applied loads and reaction forces caused by the supports and weights. These free body
diagrams are shown below in Fig. 11.2:

These equations can then be used to determine the unknown reaction forces, Ax, Ay and By once the appropriate free
body diagrams have been drawn. Typically, the most useful free body diagram to consider is the free body of the
structure itself being subjected to the applied loads and reaction forces.

Statically Determinate Structures

Structures whose reaction forces can be directly solved using the three equations of equilibrium are called statically
determinate. Statically determinate structures have the property where the reaction forces are purely a function of the
size, quantity, location, and direction of the applied loads, and are unrelated to the stiffness of the structure. This
occurs if the number of unknown reaction forces is equal to the number of equilibrium equations. Most simple 2-D
structures are statically determinate if their supports provide a total of three reaction forces.

Structures which have fewer reaction forces than the number of equilibrium equations are called mechanisms. This is
because they are unstable and can accelerate when subjected to an applied load.

Structures which have more reaction forces than the number of equilibrium equations are statically indeterminate.
The reaction forces cannot be directly solved using the equilibrium equations alone, and hence must consider other
factors such as the stiffness of the structure and positioning of the applied loads. The degree of indeterminacy is a
measure of how statically indeterminate a structure is and is equal to the number of reaction forces minus the number
of equilibrium equations.
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(1) A statically determinate system. Three unknown reaction forces
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(2) A unstable mechanism. Two unknown reaction forces
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s

1
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b

e

(3) A statically indeterminate system. Four unknown reaction forces

Fig. 11.3 — Examples of a statically determinate structure, a
mechanism, and a statically indeterminate structure.

Note: Many building structures are statically indeterminate.
Solving for their reaction forces and internal stresses
requires more advanced analysis methods than those

Fig. 11.2 — Free body diagrams demonstrating how the weight of the three loads is transferred to the ground Examples of the three situations can be found in Fig. 11.3.

In Fig. 11.2, Fw is the normal force supplied by the beam to hold up the masses, Fy is the force of gravity acting on

each mass and Ax, Ay and By are the reaction forces. The self-weight of the beam is ignored. When drawing these free
body diagrams, the following two rules have been used:

1. According to Newton's third law of motion, the force applied to the structure by an applied load or support
is equal and opposite to the force applied by the structure to the applied load or support.

2. When drawing in a force which is unknown, like an undetermined reaction force, any assumed direction will
suffice. The assumed direction will not affect the solution as long as the equilibrium equations are consistent
with the drawn free body diagram.

Note: If the assumed direction is incorrect, then the resulting
value obtained by solving the equations of equilibrium will
be a negative number.
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Example: Structures with an Internal Hinge
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Some structures are built with an internal hinge which connects two substructures together. Because a hinge freely Z F=0-4,-C,=0 (11.4)
rotates and is unable to resist moment, it has the effect of reducing the indeterminacy of the structure by one for each * xo .
internal hinge. The following example illustrates how to account for hinges in a structure when solving for the reaction
forces. Zpy =0-4,-C,=0 (11.5)
P
— DMi=0-Cxh=0 a16)

The three equilibrium equations corresponding to Free Body Diagram B are shown below, with the moment equation
being taken about point B, the right support.

7 4 Z =0-B,+C, =0 @av7)
S S e+ Cx
Fig. 11.4 — Example of a frame structure containing an internal hinge. Z F,=0-B,+C,—P=0 (11.8)
Consider the frame shown above in Fig. 11.4 which is carrying a point load, P, acting downwards on the top beam. L
The frame is supported on two pins, resulting in 2 x 2 = 4 unknown reaction forces. Although this might suggest that Z Mg =0-CeXxh+CyXxL—PXx 3= 0 (11.9)

the structure is statically indeterminate, we can take advantage of the internal hinge to solve for these unknown forces.
To do this, two free body diagrams which cut through the hinge are drawn, which reveals the two internal hinge forces.
Because each free body diagram is in equilibrium, we have a total of six equilibrium equations (three from each free
body diagram) which we can use to solve for the four reaction forces and two internal hinge forces. These free body
diagrams are shown below in Fig. 11.5.

Froe Body Diagram A Free Body Diagram B

Fig. 11.5 — Free body diagrams of the frame after it has been separated at the hinge.

The three equilibrium equations which correspond to Free Body Diagram A are shown below. Note that the moment
equation is taken about point A, the left support.

Because we have six equations (Egs. (11.4) to (11.9)) and six unknowns (A, Ay, By, By, Cx and Cy), we can solve for
each force and hence the system is statically determinate.

Note: When the frame is cut and separated at the internal
hinge, the hinge forces must be drawn in opposite directions

| . r on the two free body diagrams. This is to ensure that the
]’ ct i { forces cancel out when the frame is “put back together .
h h
J . e J
1% s,
J(;L/Z‘*L;L/Z“L
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Lecture 12 — A Bridge Over Troubled Waters

Overview:

In this chapter, truss bridge systems are discussed. Trusses, which are assemblies of steel or timber members connected
to form lattice-like structures, resist loads by having their members carry axial tension and axial compression forces.
The design process for truss bridges is introduced.

Truss Bridges and their Historical Development

Truss bridges were originally used by the Romans, who built them by connecting wooden members to cross distances
which could not be achieved using bridges built using post-and-beam construction. None of these early bridges
survived after the downfall of the empire, which led to this style of bridge construction being lost. During the
Renaissance era, the Italian architect Andrea Palladio became the first to revive the use of wooden truss bridges and
documented his designs in his Four Books of Architecture, which were published in 1570. An example of one of his
designs, the Bridge of Cismone, is shown below in Fig. 12.2, and described in the excerpt shown in Fig. 12.3.

Fig. 12.2 — Elevation (top) and plan (bottom) views of Palladio’s Cismone truss bridge.

Palladio built his truss bridges by connecting wooden pieces together with iron clamps. Wooden truss bridges based
on Palladio’s original designs continued to be in use until the early 20" century, when variants built out of cast iron
or steel members bolted or riveted together became more common. Modern truss bridges are commonly built using
steel members, often hollow tubes, which are bolted or welded together, and are primarily used for pedestrian or
railway traffic.

Fig. 12.1 — Portrait of Andrea Palladio, the Italian architect
who produced the first written documentation of wooden
truss bridges.
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When calculating Wrotal, the live load, wiive, should be taken as 5.0 kPa, which is approximately equal to 100 Ibs/ft?. A
reasonable estimate of the deck load, Weeck, if it is made from wood is 1.0 kPa, and the weight of the structural members
is typically between wsiruet = 0.5 - 1.0 kPa when using hollow steel members to span distances of up to 100 m.

The loads applied to each of the joints, Pi, are obtained by multiplying the area load, wiota, by the tributary area of
the deck, Awib, which is the portion of the deck that the joint is responsible for supporting. This is shown below in Eq.
(12.2):

P = WeotarAerin (12.2)

The tributary area is obtained using the heuristic that each joint is responsible for carrying a deck area which extends
halfway towards each of its neighbours. This can be seen in Fig. 12.5, which shows the view of the deck from above:

Bridge deck — 2115 Tributary Area - Interior Joint
Tributary area
Edge Joint
Deck width
)
{52 W2 7joints spaced ats

Fig. 12.5 - Plan view of the deck, showing the tributary areas for an interior (middle) and edge (bottom right) joint.

3. Solve for the reaction forces and analyze all of the forces in the members. This step is done using the tools
described in Lecture 11 for obtaining the reaction forces, and the analysis methods discussed in Lecture 13.

4. Size the members so that they can safely resist the loads. The method used to proportion the members to resist
tension and compression loads is discussed in Lecture 15.

5. Repeat steps 1-4 to design bracing to provide resistance against wind loads and instability effects. In addition
to the vertical loads caused by gravity, structures must also resist horizontal loads due to high winds. The cross bracing
used to resist the wind loads must also provide adequate support for long members in compression to avoid instability
due to buckling. The process of designing braces to fulfill these functions is discussed in Lectures 16 and 17.

6. Calculate the stiffness of the bridge by estimating its deflection at the midspan. A structure must be able to
safely carry the applied loads while minimizing the accompanying deformations. A procedure to calculate the
deflection of a truss structure called the Method of Virtual Work and is described in Lecture 18.

Note: The values listed here are just suggestions. The actual
loads are typically provided by a building standard, or
regulatory body, or by a product supplier.
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Trusses are an economical structural system for crossing moderate spans because the material is used efficiently, and
they can be analyzed by a design engineer with relative ease. A fundamental assumption used in analysis is that the
member connections are rotationally flexible, which allows them to be modelled as pins. A consequence of this
assumption is that all of the members in the truss will either be in pure tension or pure compression.

Design Process

The process of designing a truss bridge is a straightforward but iterative task. At a high level, the design begins by
first determining a suitable arrangement of the members which make up the bridge. An estimate of the loads applied
to the bridge is then made, and these loads are used to calculate the forces which each member must safely carry. The
members are then sized to carry these loads with an appropriate factor of safety. The bridge must then be checked to
ensure that it is adequately stiff under service loads and can resist dynamic effects caused by vibrating or moving
loads. The initial estimates of the loads must then be verified to ensure that they are do not underestimate the actual
demand. Finally, the cost of the structure is estimated to determine the feasibility of the project. Iteration is often
needed to resolve issues which may be encountered during any stage of the design process.

The aforementioned process is explained in more detail below:

1. Define the truss geometry. During this stage of the design process, the span, height, deck width, and configuration
of the members must be determined. Increasing the height of the truss at the midspan has the advantage of reducing
the magnitude of the forces in the top and bottom chords, but the increased amount of material needed may make this
option uneconomical. Two examples of possible truss geometries are shown in Fig. 12.4 below.

Joint Top Chord
Webs ———
o Warren Truss % o Pratt Truss %
Bottom Chord

Fig. 12.4 — Examples of common truss designs: Warren truss (left) and Pratt truss (right).

2. Estimate the joint loads. Once the geometry has been determined, the loads which the truss will carry must be
obtained. Calculating these loads, which are represented as point loads applied to the truss where the deck meets the
structure, is broken down into two processes: (a) estimating the weight carried by the deck due to dead and live loads,
which are typically expressed as area loads, and (b) converting these area loads into discrete loads applied to the joints.

The area load applied to the deck due to gravity, Wital, is the sum of the deck weight, weck, the weight of the structural
members, Wstruct, and the live load of a large crowd of people, wiive:

Weotal = Waeck + Wstruct + Wiive (12.1)

Note: Efficiency refers to the high strength and stiffness of
truss structures relative to its cost and volume of material
required to build them.

THIRD BOOK. 65

CHAP. VI

Of the Brivoe of Crsmoxe.
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Fig. 12.3 — An excerpt from Palladio’s work “I quattro libri
dell'architettura” (Four Books of Architecture), describing

the design of a wooden truss bridge.
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7. Design against dynamic loads. In addition to being able to support a very large, slowly moving crowd of people,
a truss bridge must be able to carry a smaller crowd of people walking over the bridge at a brisk pace. In this second
situation, the bridge will be subjected to significant dynamic loading which can lead to large displacements and forces
due to resonance. Lecture 19 presents a simple method to account for these dynamic effects.

8. Check if the initial estimate of wsiruct is greater than the actual weight of the bridge. At the beginning of the
design process, an estimate of wswruct Was needed to proceed with the design. During this stage of the design process,
the true weight of the structural components is compared with the initial estimate, and if the initial estimate of Wstruct
is lower than the actual weight, then the design process must be repeated. This requirement is mathematically
represented as:

it Liwg

< Wstruct estimate (12.3)
L X Waeck

Wstruct.actual =

In Eq. (12.3), n is the total number of members in the bridge, li and wi are the length and weight per unit length of
each member, L is the span of the bridge and waeck is the width of the deck.

If Eq. (12.3) is not satisfied, the design must begin again from step 2 using a more conservative estimate of Wstruct.
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Lecture 13 — Truss Analysis: Method of Joints, Method of Sections

Overview

In this chapter, two methods used for the analysis of forces in truss bridges are discussed. The Method of Joints, which
uses the two translational equations of equilibrium, is best suited for performing a complete analysis of the forces in
a truss structure. On the other hand, the Method of Sections uses all three equations of equilibrium and is a useful
technique for checking the forces in the structure at a particular location of interest.

Pre-Analysis Steps

Each of the methods presented herein are used to calculate the forces in the members caused by external loads at the
joints. Joint forces, which are point loads applied to the structure at the joints, can be determined from distributed area
loads by using the tributary area concept discussed in Lecture 12. This is process is illustrated in Fig. 13.2

w =15 kN/im

r
L
3 1 ] e

60KN 60KN 60KN 60KN  60KN
J,; 7 joints spaced at 4 m apart ——}
[60 kN = wxs = 15 kN/m x4 m)|

Fig. 13.2 — Truss bridge with distributed loads (left) and equivalent joint loads (right).

Once the joint loads have been determined, the reaction forces can be calculated using the three equations of
equilibrium. For a simply supported structure supported by a pin and roller on its two ends and carrying a uniform
load, the vertical reactions are each equal to half of the total load due to symmetry. More complicated cases involving
non-symmetric load patterns require using the full set of equilibrium equations to get the reaction forces.

Fig. 13.3 shows a truss structure whose loads have been converted to joint loads and has had its reaction forces
determined. The structure is now ready to have its member forces determined using either the Method of Joints or
Method of Sections.

A L

I | | | | | !
60kN 60KN 60KN 60N 60KN [L, =150 KN]

Fig. 13.3 — Truss structure with joint loads and solved reaction forces.

Fig. 13.1 — Summary of truss analysis for Palladio’s truss
bridge over the Cismone River.

49

CIV102H1F CIV102 Course Notes

September 2021

@\&

b
K A, =150 kN

AC =200 kN

A, =150 kN
Fig. 13.5 — Summary of member forces framing into joint A.

After solving for the unknown forces, it is helpful to summarize them in a diagram like the one shown on the left free
body diagram in Fig. 13.5. Because we found that the force in member AB was a negative number using our initial
sign convention in Fig. 13.4, the direction has been reversed in Fig. 13.5. The x- and y- components of AB are also
shown, which allows the state of equilibrium at joint A to be easily checked. Furthermore, it is clear that member AB
is in compression as it pushes into joint A, and member AC is in tension because it pulls away from joint A.

The force vector diagram in Fig. 13.5 graphically illustrates equilibrium of the joint by rearranging the forces in the
free body diagram so that the tails and tips of each force are connected. Equilibrium is satisfied because the rearranged
force vectors are able to form a closed path.

Once the forces in member AB and AC have been solved by analyzing joint A, the process is repeated at an adjacent
joint to solve for more unknown member forces. Joints B and C are possible candidates; however, joint C has three
unknown member forces and hence cannot be solved yet. Therefore, we will move to joint B which only has two
unknown forces to solve.

Fig. 13.6 — Free Body Diagram of joint B.

A free body diagram of joint B is shown in Fig. 13.6, which contains two unknown member forces, BC and BD, and
force AB which we solved at joint A. Note the sign convention used to define the direction of the three forces: BC
and BD are assumed to be in tension and pull away from the joint. AB, which was determined to be in compression
from our analysis of joint A, is directed to push into joint B with a magnitude of 250 kN. The resulting equations of
equilibrium are the following:

Note: It is very easy to make errors with the sign convention
and accidentally identify tension members as compression
members and vice versa. Note the following rules:

e Ifaforce is assumed to pull away from the joint but
is calculated to be negative using the corresponding
equilibrium equations, then the member is in
compression.

e If a force is assumed to push into a joint but is
calculated to be negative using the corresponding
equilibrium equations, then the member is in
tension.

Extra care must be taken when carrying over the results from
one joint to solve for the forces in an adjacent joint.

Note: Although it is not immediately obvious how to
determine if a member is in tension or compression based on
a free body diagram of a joint, it is helpful to think of
Newton's third law:

e If amember is in tension, the joints apply forces to
the members which pull away from the member. To
resist these forces, the member applies forces to the
joints which pulls them together.

e If a member is in compression, the joints apply
forces to the member which push into the member.
To resist these forces the member applies forces to
the joints to push them apart.

These principles are illustrated in Fig. 13.7 below:

Outward force applied

Inward force applied
tojoint by member

Outward force applied
to joint by member

Member

Fig. 13.7 — Compression and tension forces.
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Method of Joints

Conceptually, the Method of Joints involves evaluating the state of equilibrium in the structure one joint at a time. At
each joint, the two translational equations of equilibrium are used to solve for the unknown forces carried in the
members framing into the joint. Finding all of the forces in the structure is done joint-by-joint, two forces at a time.

To illustrate how the Method of Joints works, we will apply it to the truss structure shown in Fig. 13.3 which has 12
joints and 21 member forces. Due to symmetry, the number of unknown member forces can be reduced to 11, which
is solvable by examining 6 joints. We will begin the analysis at joint A which has only two unknown members forces;
with the exception of joint L, the other joints cannot be used as a starting point because they each contain three or
more unknown member forces, which is greater than the two equations of equilibrium we have at our disposal.

When drawing a free body diagram at a joint, both the external forces applied to the joint (due to the reaction loads or
applied loads) and the internal forces in the attached members must be considered. To illustrate this, Fig. 13.4 shows
a free body diagram of joint A. Also shown are the two unknown member forces, AB and AC, as well as the reaction
forces, Ax and Ay (note that A, = 0).

AB

A
Ax=0kN AC

A, =150 kN
Fig. 13.4 — Free Body Diagram of joint A.

The corresponding equations of equilibrium are:
ZFX:OﬁAx+ABX+ACX:O (13.1)
DB =0 4,448, =0 (132)
Substituting Ay = 150 kN into Eq. (13.2) and solving for AB results in the following:
5
4B, = 150 - AB = 3 X (~150) = ~250 kN (13.3)
Once the force in member AB is known, the force in member AC can be determined using Eq. (13.1):

4
AC = AC; = —AB, > AC = —¢ % (=250) = +200 kN (13.4)

Note: Recall that for a member carrying an axial force F, its
x- and y- components Fx and Fy are related to F by the
inclination of the member:

a
F,=Fcosf =—F

c
b

° F,=Fsing=—F
c
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ZFX:O—»ABX+BD:O (13.5)

Zﬁyzo—»ABy—Bc:o (13.6)

Solving for BC and BD can then be done by substituting the magnitude of the compression force in AC, 250 kN, into
Eq. (13.5) and (13.6), which results in:

4
D = —AB, = — £ X (250) = ~200 kN (13.7)

3
BC = AB, = 35 X (250) = +150 kN (13.8)

Summarizing these forces into the free body diagram shown below in Fig. 13.8 shows that member BD, like member
AB, is in compression as it applies a force which pushes into joint B. Member BC on the other hand is in tension,
applying a force which pulls away from joint B. The force vector diagram also shown in Fig. 13.8 also demonstrates
that the joint is in equilibrium.

v
B BD=200kN &
x o

o ;
) W BC = 150 kN

v BC = 150 kN B0 = 200 kN
Fig. 13.8 — Summary of member forces framing into joint B.

With these results, the process continues at joint C, and repeats until all of the member forces have been found. The
results of the complete analysis are shown below in Fig. 13.8, with tension forces indicated as positive and
compression forces indicated as negative.

-200 kN -320 kN -320 kN -200 kN
Sz S . 8 20
3 N S 5, 7s, 2,
5 & F 857 7 2, 2 %, |E
) g X H ) H &g o8 &
K g ¢ ¢ B
‘ +200 kN \ +320 kN J +360 kN } +360 kN } +320 kN } +200 kN ‘
150 kN 60 kN 60 kN 60 kN 60 kN 60 kN 150 kN

Fig. 13.9 — Summary diagram showing the solved member forces in the truss bridge.

Note: When interpreting a free body diagram of the joint,
remember that the drawn forces are the forces applied by the
member to the joint.

Note: When presenting your solutions on assignments,
quizzes and on the final exam, follow the same sign
convention: members in tension are positive, and members
in compression are negative.
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Method of Sections

Although the Method of Joints is a robust tool for solving for all of the forces in a truss structure, solving for member
forces which are located far away from the starting point, like the ones close to the midspan in Fig. 13.9, is a tedious
process because they can only found after the forces closer to the supports are known. A faster way to obtain these
forces, which is suitable for checking the correctness of the results or performing a preliminary design, is to instead
use the Method of Sections.

The Method of Sections uses the three equations of equilibrium to solve for up to three unknown member forces which
pass through a “section” of the truss structure. Using the method involves first cutting the structure apart with a line
passing through the three members of interest. The equations of equilibrium are then applied to either of the resulting
two substructures to solve for the unknown internal forces which were revealed by the section cut.

To illustrate how to apply the Method of Sections, we will solve for the forces in members DF, EF and EG from our
previous example. Figure 13.10 shows two free body diagrams, one for the left substructure and one for the right
substructure, after the original structure was cut through these members. Because the original structure was in
equilibrium, each substructure must also be in equilibrium and hence the forces of interest can be determined by
examining either of the free body diagrams.
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Fig. 13.10 — Free body diagrams used in the Method of Sections to solve DF, EF and EG.

In Free Body Diagram A, the translational equilibrium equations can be written as:

ZFX:OﬁDF+EFX+EG:O (13.9)

DB =0 150+ EF, 60— 60 = 0 (13.10)

When considering rotational equilibrium, the number of unknown forces which appears in the equation depends on
the choice of reference point. A good choice of reference point in this example is joint E, which has two unknown
forces, EF and EG, passing through it. This means that the resulting equation will only contain one unknown force,
DF, allowing it to be easily solved. In general, it is a good idea to select a point which is common to two of the forces
which need to be solved. The resulting equation is shown below:

Note: Defining the initial directions of the unknown forces is
very important when using the Method of Sections. If the
unknown forces are assumed to pull away from the joints,
then positive values will correspond to tension and negative
values will correspond to compression.

Note: The resulting equations of equilibrium should only
include the reaction force at a support, the joint loads
applied to the substructure, and the three unknown internal
forces which were revealed by the cut.
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Lecture 14 — Euler Buckling of Struts

Overview

Slender members in compression can fail suddenly due to buckling. This chapter presents the derivation of Euler’s
equation for predicting the load at which buckling takes place.

Members in Compression

Consider the prismatic member shown in Fig. 14.2. If the two ends of the member are subjected to tensile forces, T,
the only way for the ends of the member to move apart is if the member elongates. The strains experienced by the
member as it stretches can be calculated using the equation € = Al/L,, and the member will fail when the stress in
the member, o = T/A, is equal to the ultimate tensile strength of the material.

Consider now the members subjected to compression forces in Fig. 14.3. Under the compressive forces, the two ends
of the member are forced to come together. However, unlike the member in tension, there are two possible ways for
the member to deform to allow this to happen. The first way is for the member to simply shorten, which is the opposite
of what would happen if it was instead in tension. The second way is if the member, instead of changing length, curves
to bring the two ends together. These two actions are shown on the central and right figures in Fig. 14.3 respectively.

Failure due to the first mode of deformation, which typically occurs for short, stocky members, is called crushing,
and the force which causes crushing is sometimes referred to as the squash load. The second mode of failure, which
commonly occurs in long, slender members, is called buckling. How a member fails depends on the relative amount
of force required to cause crushing or buckling; whichever is easier will be the determining cause of failure.

Tension, T Compression, C Compression, C

a a

Area, A

L L+al

a
a
Area, A
Lo Lo+an Lo+a
b 3

b

b b Compression, C

Compression, C
Tension, T Axial Shortening Buckling
Note: for members in compression, Al is negative.

Fig. 14.3 — Members in compression.

Fig. 14.2 — Members in tension.

[ 250ue
CO AHA POAEHHR'
BEAHKOIO
MATEMATHKA,
AKAAEMKKA

Fig. 14.1 — Soviet-era stamp celebrating the 250" birthday
of the famous mathematician Leonard Euler.
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ZME=0—>60><4—150><8—DF><3=0 (13.11)

Egs. (13.9) to (13.11) are a system of three equations with three unknowns (DF, EF, and EG), which when solved
results in DF = -320 kN, EF = - 50 kN and EG = +360 kN. These results are consistent with our full solution shown
in Fig. 13.9.

Note that examining equilibrium of Free Body Diagram B in Fig. 13.10 would result in the same values of DF, EF
and EG.
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Calculating the squash load of a member, Pcrush, is straightforward if the cross-sectional area A and the ultimate
compressive stress, aerush, are known:
Perush = OcrusnA 14.1)

Calculating the load which causes buckling to take place is more challenging because failure involves the member
bending. The solution to the buckling problem was eventually solved by Leonhard Euler in 1757, leading to his
celebrated equation for the Euler load, or the load causing buckling, Pe:

m?El
R="7 (14.2)

Derivation of the Euler Load for Elastic Buckling
Euler’s derivation of the buckling equation begins with the following assumptions on the member, shown in Fig. 14.4,
which has a length of L and is being subjected to a compression force P which causes the member to curve as it
buckles:
i The material is homogenous and linear elastic, having a uniform Young’s modulus, E, and second moment
of area, I.
ii. The top and bottom ends of the member are free to rotate. Furthermore, the top of the member is free to move
vertically, and the bottom of the member is translationally fixed in place.
iii. The member is initially perfectly straight and either end is free to translate horizontally.

Compression Force, P

Y —

P

Undeformed System

.
< | |
Flexural Stiffness, EI \ P
M = Elx¢
Length, L ® Lateral Deflection, y(x)
& |
Y

Deformed System Free Body Diagram A

Fig. 14.4 — Derivation of Euler’s critical buckling load.

Note: Recall that the product El is the flexural stiffness of a
member.

56



CIV102H1F CIV102 Course Notes September 2021
To investigate the how the member resists the load while in its curved position, a free body diagram can be drawn
which cuts through the member a distance x away from the pin support. At the cut, the member is transmitting the
compressive force P, which forms a counterclockwise couple with the reaction force at the base. To resist this couple,
the bent member must also carry an internal moment M at the location of the cut, which rotates clockwise satisfy
rotational equilibrium. Taking the sum of moments to equal to zero results in the following equation:
Pxy=M (14.3)
In Eq. (14.3), y is the lateral displacement of the member relative to its original position. Recall that the moment
carried by the member is related to its curvature, ¢, by the flexural stiffness El:
M = El¢ (14.4)
Substituting Eq. (14.4) into Eq. (14.3) the results in the following equation:
Py = Elg (14.5)
Recall that the curvature is defined as the change in slope along the length of the member, and the slope is the change
in lateral displacement. Therefore, the curvature is the second derivative of the lateral displacement; noting that the
member has displaced in the positive y direction but is concave down, ¢ and y have the following relationship:
d?y
=——= 14.
¢ Wz (14.6)
Substituting Eqg. (14.6) into Eq. (14.5) and then dividing both sides by El results in the following differential equation:
P d?y
Ey =5 (14.7)
We can solve Eq. (14.7) in the same way that we solved the differential equation for free vibrations in Lecture 7,
which was by assuming a function for y, and then checking to see that it satisfies the equation. Because Eq. (14.7)
resembles the differential equation that we saw in Lecture 7, we will assume that y has the form:
y = Asin(wx + B) (14.8)
Taking the second derivative of Eq. (14.8) and then substituting everything into Eq. (14.7) results in the following
requirement for o:
P
w= |5 (14.9)
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Behaviour
2
First Mode Second Mode Third Mode Fourth Mode Lateral Deflection, A,
n=1 n=2 n=3 n=4 o

Fig. 14.5 — Higher modes of buckling and associated critical buckling loads.

Under ideal conditions, members are perfectly straight and will theoretically remain so before suddenly buckling once
the critical buckling load is reached. Real members however are not perfect and will have a nonzero initial lateral
deflection at their midspan, Ao because they are not straight. This al deflection means that they will visibly bend
before the Euler load is reached. The relationship derived by the British mathematician Richard Southwell suggests
that that lateral deflection of an imperfect member, Aj.:, when subjected to a compression force P is:

Djge=—"5 (14.15)
Perie

In Eq. (14.15), Peritis the critical buckling load, which is equal to the Euler load for members which satisfy the support
conditions used to derive Pe. The behaviour predicted by Eq. (14.15) is compared with ideal buckling behaviour in
Fig. 14.6.

Fig. 14.6 — Comparison of compression response for
perfect (red) and imperfect (blue) members.

Note: The response of ideal members which remain perfectly
straight before buckling at the Euler load is an example of
bifurcation behaviour.

Note: A graphical rep ion of Southwell’s method can
be used to determine the critical buckling load of an as-built
member without subjecting it to forces which approach its
failure load. This is useful for evaluating the safety of
structures which are in service and cannot be loaded to
failure.
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We can learn more about the shape of the buckled member if we make use of the fact that the member is prevented
from having any lateral displacements at its ends. These are summarized in the following boundary conditions:
y(x=0)=0; y(x=L)=0 (14.10)
Substituting the first boundary condition into Eq. (14.8) results in the requirement that B = 0:
0=Asin(wx0+B)>B=0 (14.11)
Using this new information and then substituting the second boundary equation into Eq. (14.8) results in the
requirement that L be an integer multiple of pi (i.e., n=0, 1, 2, 3, etc.):
0 = Asin(wl) - wlL =nw (14.12)
Combining Eq. (14.9) with Eq. (14.12) and isolating for the load carried by the buckled member, P, results in the
following equation:
n?n?El
P=—F (14.13)
The smallest nonzero value of P requires using n = 1. This corresponds to the Euler load in Eq. (14.2), which is
reproduced below as Eq. (14.14):
m?El
=0 (14.14)
Higher Modes of Buckling
Note that in our equation for P, the compressive force carried by the buckled member, there were numerous values of
n which were possible. Values of n which are greater than n = 1 correspond to higher modes of buckling, which occur
when the member buckles into more complex shapes. For the simple member used in this example, n corresponds to
the number of half cycles that the sinusoidally-shaped member assumes. The shapes corresponding to various values
of n are shown in Fig. 14.5.
Stability of Members under Compression Loads
Buckling is an unstable form of equilibrium. Unlike tension for example, where pulling on a member produces a
restoring force which helps to return the member back to its original shape, a member which is buckling will
continuously weaken and curve more and more as it is loaded.
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Lecture 15 — Truss Bridge Design Continued

Overview

In this chapter, the process of selecting appropriate members in a steel truss using working stress design is discussed.
The properties of hollow structural sections (HSS) are described in detail. Although the design of truss members using
steel HSS are covered in this chapter, the basic concepts are also applicable to the design of trusses using other
materials (i.e., wood) or alternative types of steel sections.

Design of Members in Tension

As discussed in Lecture 6, steel behaves in a linear elastic manner for relatively small stresses. Once the stress in the
material reaches the yield stress, it will yield and elongate substantially, with most of these deformations being non-
recoverable. The steel will be able to resist a higher stress than the yield stress, the ultimate stress, due to the effects
of strain hardening, before failing shortly after.

Although designing structures using the ultimate strength can lead to material savings, structures must prioritize safety
over economy. This is because the consequences of exceeding the ultimate stress, which include structural failure and
a potentially catastrophic loss of life, are not worth the relatively minor savings in the cost of construction. It is for
this reason that the yield strength is instead used as the design strength of the materials involved. Furthermore, large
factors of safety are also employed to reduce the likelihood of failure, as discussed in Lecture 8, and guarantee that
the structure remains in a linear elastic state during its service life.

The stress, ¢, in a member with a cross sectional area A when it is carrying a tension force F is:
o=— (15.1)

In design, the maximum allowable stress which may be carried by a member in tension is the yield stress, oy, divided
by a factor of safety; an appropriate factor of safety for yielding is FOSyiela = 2.0. Substituting this into Eq. (15.1)

results in the req 1t on the ¢ tional area of a member which must carry a tensile force F:
F F
A= FOSyi014 P 2-0,,_y (15.2)

A common value of the yield strength of structural steel products made in Canada is oy = 350 MPa.

Design of Members in Compression

Members in compression can fail by either crushing or buckling. Crushing failures, which occur in stocky members
which do not buckle, occur when the stresses reach the compressive strength of the material. For steel, the stress which
causes yielding in compression is the same as the yield stress in tension, which is 350 MPa. Therefore, Eq. (15.2),
using a factor of safety of 2.0 for yielding in compression, can also be used to determine the required cross-sectional
area for members in compression.

Note: Another reason why the yield strength is used instead
of the ultimate strength is because the significant permanent
deformations due to yielding are not desirable. Although
structures which have yielded may still be strong enough to
carry substantial forces, they will appear unsafe and may not
be able to fulfill their other non-structural functions.
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Buckling occurs when the load carried by the member reaches its critical buckling load, Pe. Recall that for a member Fig. 15.1 plots the failure stress of members in compression as a function of the slenderness ratio of the member. For
with Young’s Modulus E, second moment of area I and length L, the buckling load is equal to: short members with low slenderness ratios, the buckling stress approaches infinite and hence these members instead
fail at the yield stress of the material. However, as the slenderness ratio increases, the buckling stress decreases rapidly
w?El which causes very slender members to fail at a fraction of the yield stress of the material. The red curve, which is
e= T2 (15.3) obtained by taking the smaller of the yield stress and the buckling stress, represents the failure stress of the member
and is often referred to as a failure envelope. The blue curve is obtained in a similar manner as the failure envelope
Buckling is a more dangerous mode of failure than yielding. Some reasons for this are because it generally occurs but considers the minimum of the allowable yield stress and the allowable buckling stress. This curve is suitable for
more suddenly than yielding and is associated with instability and a loss of strength once it takes place. Therefore, the design because it incorporates appropriate factors of safety for the two modes of failure.
factor of safety associated with buckling is FOSbuckiing = 3.0, which is larger than the corresponding factor of safety
for yielding due to the above reasons. Reducing the allowable compressive force by taking Pe and dividing it by the 400
factor of safety results in the following requirement on the second moment area of a member which must carry a
compression force F: 350 1
FL? FL?
12 FOSpucing 3 = 30 5 (15.4) .
As noted in earlier chapters, the Young’s modulus of steel is E = 200,000 MPa. Faso
=
The stress causing failure of a member subjected to compression forces is the smaller of the failure stresses associated g 200
with yielding and buckling. The yield stress is a property of the material and is independent of its size. On the other e
hand, the Euler buckling stress o, which is calculated by taking the buckling load Pe and dividing by the cross- Témo Design Curve:
sectional area A, depends on the length of the member, L: = open = ’“'"B"M%“]
100
P, m2El
G =t= (15.5)
A AL?
50
We can simplify Eq. (15.5) by introducing a new term r, which is called the radius of gyration: Note: The radius of gyration is not a directly measurable
property and is not equal to the radius of a circle. Its physical 0
i be deduced by considering that | is the O ememRato
meaning can be y dering f Slendemess Ratio (L/r)
_ L (15.6) geometric property of a cross section which affects its . X . 3
A - flexural stiffness, and A is the geometry property which Fig. 15.1 — Influence of slenderness ratio on the strength of compression members. Values plotted are for steel with
affects its axial stiffness. The radius of gyration is hence a oy =350 MPa and E = 200,000 MPa.
Substituting the definition of r into Eq. (15.5) results in the following representation of the buckling stress: ratio of @ member’s flexural stiffness to its axial stiffness. . .
Summary of Design Requirements
2E When designing the individual members used in a structure, the primary task required of an engineer is to proportion
z (15.7) the sizes of the members so that they are able to safely resist the applied loads. Once the minimum required values of
(L/,) the cross-sectional properties, such as the cross-sectional area A, second moment of area 1, and radius of gyration r,
have been obtained, the structural member is specified from a catalogue of available products.
In Eq. (15.7), L/r is called the slenderness ratio, a nondimensional term which describes the tendency of a member . X X . . . -
to buckle. Members with a large slenderness ratio tend to fail due to buckling, and those with a small slenderness ratio Eq. (15.2) is appropriate for selecting the required A for both tension and compression members. The minimum
tend to fail by crushing. required | for compression members can be determined by using Eq. (15.4); this check is not required for tension
members which cannot buckle. Furthermore, modern design codes also limit the slenderness ratio of a member to
discourage the use of very slender members which are vulnerable to unexpected changes in loading. This requirement
is shown in Eq. (15.8):
61 62
CIV102H1F CIV102 Course Notes September 2021 CIV102H1F CIV102 Course Notes September 2021
Table 15.1 — Design Equations for Tension and Compression Members v Table 15.2 — Table of Standard HSS Properties
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Lecture 16 — Blowing in the Wind

Overview

In addition to loads caused by gravity, which generally act downwards, structures must be designed to resist wind
loads which typically act laterally. This chapter presents a simple method for determining the loads caused by severe
windstorms and outlines a procedure for designing cross bracing to safely resist them.

Wind Loads

A strong wind is capable of producing forces that are large enough to cause structures to collapse, like the trees shown
in Fig. 16.1 and the bridge over the Firth of Tay shown in Fig. 16.2. The bridge collapsed in 1879 when a train
attempted to cross over it during winds blowing at speeds of up to 117 km/h, killing all 75 passengers on board. In
regions of low seismicity, wind loads are usually the most important lateral load which structural engineers must
consider when designing structures.

When a wind is blowing onto a surface of a body, it applies a force, Fwind, which can be calculated using Newton’s
drag equation:

1
Fuina = 3P7*¢pA (16.1)

In Eq. (16.1), p is the density of the fluid, v is its velocity, A is the frontal area on which the wind acts, and cp is a
drag coefficient which describes the ability of the wind to travel around the body. co may take on a range of values,
being 0.2 for a well-designed sports car, 0.75 for a sphere or cylinder, and 1.5 for boxy objects like a cube or a wall.

A simple design value of the wind pressure, Wuind, can be obtained by using the density of air, p = 1.2 kg/m? and
assuming appropriately conservative values for v and cp, If the maximum wind speed is assumed to be 170 km/h and
Cp is taken as 1.5, the wind pressure is equal to:

F
Windg = W/;““ =2.0kPa (16.2)

Therefore, an appropriate value for design is wwina = 2.0 kPa of force, acting horizontally on the structure.

Design of Cross Bracing to Resist Wind Loads

To prevent the main trusses of a bridge from collapsing due to the force of the wind, cross bracing must be provided
to connect the top chords and bottom chords together. With this bracing, the bridge will then be able to transfer the
applied wind forces to the supports on the ends, in a similar way that the main trusses support the gravity loads applied
to the deck and transfer them to the supports. A typical arrangement for the top and bottom braces is shown in Fig.
16.3.

Fig. 16.1 — Pine trees broken by a windstorm

3 - =

Fig. 16.2 — Firth of Tay ige, 29 Decemher 1879. The
engineer, Sir Thomas Bouch, was unable to produce the
wind 1s during the
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Fig. 16.5 — Analysis of the forces in the top braces.

Fig. 16.5 shows a simplified approach to solving for the forces in the top braces. In this schematic, we have assumed
that the reaction forces provided at the supports can be transferred along the outside members to meet the braces. With
this assumption, the brace forces can now be determined using the Method of Joints.

Calculating Joint Loads using the Tributary Area

Although calculating the brace forces once the wind loads have been determined is a straightforward task, obtaining
the joint loads caused by the wind requires a series of intricate calculations to be done. The joint load Puwina is calculated
in a similar way as the joint loads caused by gravity, but instead the loads act on the frontal area of the bridge, Atrontal,
instead of on the deck:

Pwind = WwindAfrontal (16.3)
In Eq. (16.3), Wwind is typically taken as 2.0 kPa.

When determining the frontal area, the tributary area concept is used in the same way it was used for obtaining the
gravity loads, meaning that a joint is responsible for carrying the loads applied to the surfaces halfway to each of its
surrounding neighbours. The frontal area used in Eq. (16.3) is hence the solid area within this tributary zone.

16.6 show the elevation view of a truss bridge and illustrates how the wind pressure is distributed to produce
rete loads applied to the joints. The frontal area associated with joint A is all of the solid area within Zone A, and
likewise for joint B. Due to the presence of the handrail in Zone B, the force applied to joint B will greatly exceed
what joint A must carry.

Note: Moving the reaction force from the support to the top
bracing requires a carefully designed connection. The design
of these connections is outside of the scope of CIV102 but
can pose a serious design challenge in real-life engineering
practice.
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Fig. 16.3 — Arrangement of cross bracing on the top (above) and bottom (below) of a truss bridge.
The bridge has the same geometry as the one analyzed in Lecture 13.

In each of the schematics shown in Fig. 16.3, Puind is the joint load caused by the wind blowing onto the side of the
bridge. Because the direction of the wind is not fixed, the cross bracing must be designed to resist loads acting on
either side. Furthermore, the loads can push towards the bridge, or pull away due to suction effects. This results in
four possible combinations of loading which must be considered when designing the members.

Determining the forces in the bottom cross bracing follows the same process as the analysis of the main truss for
gravity loads. First, the reaction forces Ry, and Ry,r must be determined based on the applied loads. After these loads
have been determined, the forces in the braces can be obtained by using the Method of Joints or Method of Sections.

Analyzing the top cross bracing using a truss analysis method like the Method of Joints is not immediately possible
due to the lack of diagonal members which connect the supports to the rest of the braces. These members are omitted
to allow entry and egress of the bridge. In lieu of these members, the connection is typically stiffened to allow the
forces in the cross bracing to be transferred to the ground.

DOUBLE INTERSECTION
WROUGHT IRON RALROAD BRIOGE

A SYSIEM OF
LROAD BRIDGES

Fig. 16.4 — Isometric view of a truss railway bridge. Note
the use of stiff connections at the front to eliminate the need
for a brace crossing over this region. The open entryway
stiffened at the corners is called a Portal Frame.
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Fig. 16.6 — Elevation view of a truss bridge. Joint A is responsible for carrying the loads applied to the solid surfaces
within Zone A, and joint B is responsible for carrying the loads applied to the solid surfaces in Zone B.

Fig. 16.7 shows the details of Zone A and B in more detail. Each zone has a height of h/2, and a width of st and spot
respectively. The frontal area in Zone A can be approximated using the following equation:

.
Apvontat = by = bily + byly + byly + byl (164)

=

In Eq. (16.4), n is the number of members within the zone, bi is the outside dimension of the cross section facing the
wind, and li is the length of the member within the zone.

For situations involve a handrail, like in Zone B in Fig. 16.7, the frontal area of the handrail is much larger than the
frontal area of the HSS, which can hence be neglected for simplicity. Although the handrail may consist of closely
spaced vertical members with gaps in between, the resulting turbulence as the air flows through these narrow spaces
will increase the drag force applied to the railing. Therefore, the handrail may be approximated as a solid surface,
resulting in a frontal area of:

Afrontal = RraitSpor (16.5)
Note that Eq. (16.4) and (16.5) should be modified when used in situations where the horizontal or vertical spacing of

the joints is irregular. The governing principle when making these modifications is that each joint is responsible for
the zone halfway to each of its neighbours.

Zone B

| / ~ Handrail ‘

[ ‘

| ‘

h | hi2
| |

i |
- B I 5

f Spail2 L Spail2 )

Fig. 16.7 — Schematics for determining the tributary areas
in Zone A and Zone B.
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Lecture 17 — A Bracing Lecture

Overview

In this chapter, the process of designing cross braces to laterally support members in compression is presented.
Compression members typically tend to deform because of imperfect alignment, which can reduce their buckling
strength if their joints are not adequately restrained from moving. A simple analysis technique is derived to ensure
that the lateral movements at any joint does not exceed 1% of the attached member’s length.

Stability and Misalignment of Compression Members

Consider the truss bridge shown in Fig. 17.1, whose top chord is in compression as it supports a substantial gravity
load applied to the deck. When designing the chord, it was assumed that the member and its joints were perfectly
aligned so that the compression member buckled between the joints with an effective buckling length equal to the
spacing between the joints (i.e., L = the joint spacing) when evaluating the buckling force Pcrit.

e Top chord in compression

\
1 .
Pgray Pgray
'~ Bottom chord in tension
n2El
crit = =

Fig. 17.1 — Design of top chords against buckling using the joint spacing, L.

In reality, these assumptions are generally not true: the members will be slightly misaligned due to the imperfect
nature of construction, and the stability of the joints will depend on the stiffness of the braces used to connect the
chords of the truss together. In extreme cases, like truss bridge in Fig. 17.2 which does not contain any diagonal braces
connecting its top chords together, the compression chords can buckle over the entire length of the bridge at a much
lower load than originally anticipated.

The bridge shown on the right in Fig. 17.2, which contains diagonal braces and rigid connections at the portal frame,
avoids this issue by preventing the joints from deforming in the out-of-plane direction. Having this bracing system
provides stability to the structure and allows us to design the compression members using our original assumption that
the effective buckling length is the joint spacing. The braces which connect these compression members must therefore
be sized so that they can provide an adequate restraining force to prevent the chord from buckling at its joints.

Recall: Gravity loads are applied to the deck, and include
the weight of the deck itself, the weight of the structural
components, and the weight of a large crowd of people.
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Therefore, to ensure that the compression member is adequately braced for stability, there must be braces attached to
each of its joints which are able to provide a local restraining force of R = 0.02P.

Ri2

Fig. 17.4 — Free body diagram used to determine the required restraining force, R, if A =0.01L.

Fig. 17.5 shows how the diagonal braces provide the required restraining force as the intermediate joint moves
laterally. As the joint displaces outwards, the two diagonal braces come into tension and pull the joint back to its
original position. To maintain vertical equilibrium at the bottom joints, the vertical members must go into
compression, which in turn stabilizes the top joints by providing the reaction forces shown in Fig. 17.3. The opposite
occurs if the intermediate joint was to instead displace inwards.

Just like when designing for wind, the braces supporting compression members must also be designed for four possible
situations because either of the compression chords may buckle towards or away from the centre of the bridge. These
four situations are illustrated in Fig. 17.6, which shows a portion of the braces connecting the top chords from plan
view.

R=0027 R=002:P
v

3 Poe 3

3 PP 3

[ Poe e

Py e - P & B P
'

R=002® R=002:p

Fig. 17.6 — Summary of design cases when designing braces for stability.

It should be emphasized that the stability design described above is a local check to ensure that each joint is adequately
supported by the braces. This contrasts with a global analysis, which is done when designing for wind for example,
which involves obtaining the reaction forces and complete member forces for the entire bridge.

Fig. 17.5 — Mechanism by which cross bracing restrains
joints from buckling outwards.
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Out-of-plane
direction Diagonal bracing

+

Fig. 17.2 — View of a truss bridge from above, showing how cross bracing can restrain the chords from buckling
over the entire span.

™~ Rigid connection for portal frame

Lateral buckling of entire chord possible due to lack of
diagonal cross bracing

Lateral buckling of entire chord prevented due to diagonal
cross bracing and rigid end connections

Design Check for Stability

Fig. 17.3 shows two schematics of a compression member with a length of 2L and subjected to a compression force
of P. Because the joint at the midspan is not restrained, it buckles and displaces laterally at its midspan by a distance
A. To prevent the system from deforming further, a restraining force, R, is required to pull the displaced joint back to
its original position; this is shown in the second drawing in the figure.

P Restraint Force, R -—P

RI2 RI2

—_———

Lateral deformation due to compression forces Required restraint forces to maintain stabilty

Fig. 17.3 — Analysis of a compression member as the joint moves out of plane.
The required restraint force to restore the joint back into its original position depends on how much it has displaced,
i.e., as the deformation A increases, R must increase as well. In design, an appropriate value of A to use is A = 0.01L
(1% of L). This misalignment, equal to 1% of the of the length of the individual members, is a reasonable upper bound
of what can be expected given modern construction practices.

Fig. 17.4 shows a free body diagram of half of the situation shown in Fig. 17.3. Because the system is in equilibrium,
taking moments about the bottom left joint results in the following equation:

R
PxA=5xL @7.1)

Substituting the requirement that A = 0.01L results in the following requirement for the restraint force:

R =0.02P 17.2)
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Design Process for Cross Bracing

The design of the braces on the top and bottom of the bridge to resist wind loads and instability effects can be done
together once the main trusses have been designed to resist the gravity loads. The braces which connect the bottom
chord will typically only need to be designed for wind loads because the gravity loads cause them to go into tension.
This contrasts with the design of the braces on the top of the bridge, which must both resist wind loads and provide
stability when the gravity loads cause the top chords to carry significant amounts of compression.

To design the top braces, the following steps should be followed:

1. Calculate the wind loads and determine the brace forces. This is a global analysis which involves solving for
the reaction forces and then obtaining the brace forces by using the Method of Joints or Method of Sections.

2. Calculate the forces in the braces which are required to stabilize the compression chords under gravity loads.
Using the forces in the chords as obtained under gravity loads, calculate the required restraint force needed to support
the joints along the top chord from displacing laterally. This is done by performing a series of local analyses, like the
ones shown in Fig. 17.6, with the goal of calculating the forces in the members directly attached to the displaced joint.

3. Select appropriate HSS sections which can carry the larger of the forces obtained in steps 1 and 2. The braces
should be designed for both tension and compression because the wind or instability can act in any direction. Typically,
only one or two HSS sizes are used for the braces to avoid errors during construction and avoid potential supply issues.

The design process for the bottom braces is identical but omits step 2 because the bottom chords will not buckle under
the tension forces caused by gravity loads.

Note: The compression force in the top chord varies along
its length. If you find when drawing a schematic like those in
Fig. 17.6 that the forces in the chords on the two sides are
not equal, use the larger value to find R to be conservative.

Note: The braces need to be designed for the more severe
case of wind or instability, but not both at the same time. This
is because the loads will not occur at the same time. For
example, during the event of a severe windstorm, it is highly
unlikely for a large crowd of people to occupying the bridge
at the same time. High wind loads will generally occur in the
absence of high gravity loads, and vice-versa.
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Lecture 18 — Method of Virtual Work

Overview

Although determining the forces in a truss bridge structure is a straightforward task, determining the deflection of a
loaded structure can be an arduous challenge. In this chapter, the Method of Virtual Work is presented, which transforms
the task of solving displacements from a complex geometric problem to a simple statics problem.

Introduction

In structural engineering, it is equally important for a structure to have adequate strength and stiffness. The importance
of strength, which is the ability of a structure to safely carry the expected loads, has been discussed extensively in
previous chapters. Stiffness on the other hand is a measure of how well a structure can limit its deformations under
service loads. Excessive deformations can disrupt other functions of the structure and are generally unpleasant if they
are large enough to be observed by users of the structure.

Determining the deformations of a truss structure when loaded can be done by solving for the forces in the members,
calculating the corresponding changes in length of all of the members, and then determining the displaced shape using
these new member lengths. Although this is a feasible procedure to determine the deflections of very simple structures,
it quickly becomes impractical as the number of members which need to be considered increases.

An alternative means of solving for the displacements uses energy methods. According to the theorem of conservation
of energy, the work done by the externally applied loads F acting over the external displacements A, W, must equal
to the work done by the internal members changing length, Al, while carrying internal forces P, Wint. In the case where
m loads are applied to a truss structure with n members, this can be expressed as:

Wesxt = Wine (18.1)

The work terms in Eq. (18.1) can be expanded further, which results in the following:

m n
f Fdd; = f PdAl (182)
)

The equivalence of the external work and internal work is the basis of the Method of Virtual Work.

The Method of Virtual Work: Derivation

To introduce the Method of Virtual work, consider the simple two-member truss which is shown in Fig. 18.1. There is
a force F applied to the structure which causes joint B to translate horizontally and vertically by ABxand ABy
respectively. The two members, member AB and BC, will resist the applied force by carrying internal member forces,
Pag and Pec respectively, and will stretch or contract by Alag and Alsc as a result. The quantity which we would like
to solve is the vertical displacement of point B, ABy.

Note: Service loads refer to the loads which the structure
must carry under normal circumstances. This is different
from extreme loads which arise from severe windstorms,
earthquakes, or large crowds.

Note: The integrals in Eq. (18.2), which represent the work
done by the forces acting over displacements, are a
mathematical representation of the area under a force-
displacement curve. Refer to Lecture 6 for more
information.

Note: The derivation of the method of virtual work is
included here for completeness but will not be assessed
during the course. You will be assessed based on how well
you are able to apply the method to solve problems.
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Eq. (18.5) contains the products of virtual forces and virtual displacements, which are unrelated to the real forces and
real displacements which we are interested in. If we take advantage of the fact that the structure is linear elastic, then
we can combine our virtual system with our real system, resulting in a hybrid system which has both real and virtual
forces and real and virtual displacements. This is shown in Fig. 18.3.

Member Force, Pgc+Pae %
Member Deformation,
Dlgc+Al'ge

Member Force, Pag+P*ag
Member Deformation,
A+ Al g

Force, F + F*
Joint Displacement, AB + AB*

Fig. 18.3 — Hybrid system containing both real and virtual quantities.

Fig. 18.4 contains four plots which show the force-displacement relationships of the structure and its members due to
the application of both the real and virtual forces. The top two plots show the relationships between the externally
applied forces and the displacements of joint B, and the bottom two plots show the relationships between the internal
member forces and their member deformations. The area underneath the curves represents the work done; the red areas
correspond to work done by the real forces acting over the real displacements, and the blue areas represent the work
done by the virtual forces acting over the virtual displacements.

By using the principle of equivalent internal and external work in Eq. (18.1), the total area underneath the top two
graphs, the external work, must be equal to the total area underneath the bottom two graphs. Furthermore, the red areas
in the top graphs must equal the red areas in the bottom graphs, due to Eq. (18.4), and the blue areas in the top graphs
must also equal to the blue areas in the bottom graphs, due to Eq. (18.5).

Note: The net forces, stresses and strains resulting from
the real load F and virtual force F* acting together is
simply the sum of the effects caused by each individual
force. This is called the Superposition Property
(sometimes referred to as the Superposition Principle) and
is applicable to any linear elastic system.
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Member Force, Poc
Member Deformation, Alge

Member Force, Pac
Member Deformation, Al*ge

Member Force, Py

Member Deformation, Alyg Member Force, P*,
P

Member Deformation, Al‘sg. Virtual Force, F*

Real Force, F Joint Displacement, AB*

Joint Displacement, AB

Fig. 18.1 — Real system of forces and displacements.  Fig. 18.2 — Virtual system of forces and displacements.
Consider the equivalence of the external work done by the force F as it acts over the displacements at joint B and the
internal work done by the members as they deformed in response to the applied load. If it is assumed that all of the
members are linear elastic, then Eq. (18.2) can be rewritten as:

<1 1
ZEF‘A‘ :ZEP,AI, (183)
i=1 =1

Expanding Eq. (18.3) for our simple system and breaking up F into its x- and y- components yields:

1 1 1 1
3 FebBy + 5 FAB, =2 Paghlag + 5 Pachloc (18.4)
The terms on the right side of Eq. (18.4), which contain the internal forces and the changes in lengths of the members,
can be solved using tools discussed in the previous chapters. However, the left side of our equation contains two
unknown displacements, ABxand ABy, which cannot be solved because we only have one equation.

To overcome this issue, we will introduce a virtual system, shown in Fig. 18.2, which is geometrically identical as the
original system, but only contains a single virtual force, F*, which acts in the same position and direction of our
displacement of interest, ABy. The virtual force causes the system to have virtual member forces, P*ag and P*sc which
result in virtual member deformations, Al*ag and Al*sc, and virtual displacements at joint B, AB*xand AB*y. Writing
the work equation for this system, noting that the x-component of F* is equal to zero, results in:

1 1 1
5F*AB} = > PigAlip + 3 PicAlyc (18.5)

Note: The virtual force F* has an arbitrary magnitude and
is usually taken as F* = 1 kN. The key concept when
specifying F* is that F* has the same location and
orientation as the displacement of interest. F* is
sometimes called a dummy load.
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Work done by external loads

[}

Fy

Horizontal Force
Fx
Vertical Force

v

B

1B A8, 1B,
Horizontal Displacement Vertical Displacement

Work done by internal loads

Pac

Force in Member AB
Pag
Force in Member BC
Prac

+

P

s Als
Deformation of Member AB

Brec Alsc
Deformation of Member BC

Fig. 18.4 — Load-displacement plots for the structure (top) and individual members (bottom) when subjected to a real
load F and a virtual load F*. The area underneath each curve is equal to the work done.

Because the total areas, as well as the red and blue areas, must equal, it can also be concluded that the area of the purple
regions, which are the product of a virtual force and a real displacement, must equal as well. These areas represent the
virtual work done by the virtual forces, F*, P*as and P*cg acting over the real displacements, ABy, Alag and Algc.
Expressing this equivalence mathematically results in the following equation:

F*AB, = PipAlyy + PocAlye (185)

Note: The terms in Eq. (18.5) do not have a coefficient of
Y because they represent the rectangular areas under the
load-displacement relationships.
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In Eq. (18.5), there is now only one unknown displacement, ABy, which can be solved once the other terms are found
from statics and Hooke's law. The advantage of using the Method of Virtual work is that by using a virtual system which

Note: When using Eq. (18.6), the product of a force and
i will be in Joules if the force is in kN and the

contains one load, we are always able to obtain single equation with one unknown displacement, regardless of the size
of the structure and complexity of the real loads. Therefore, Eq. (18.5) can be generalized for a system of arbitrary
complexity to be:

n
F'A= Y PrAL (18.6)

Where the variables in Eq. (18.6) are defined as follows:
e Aisareal joint displacement of interest.
e F*isa virtual load of arbitrary value (usually taken as 1 kN) applied to the structure which has the same
location and direction as A.
e P*iare the virtual member forces resulting from the virtual force F*.
e Aliare the real member deformations caused by the real forces in the system.
* nisthe total number of members in the truss structure.

The Method of Virtual Work: Summary and Example
The basic procedure to use the method of virtual work is shown below:
1. Solve for all of the member forces, Pi, due to the real loads using any analysis method.
2. Using the member properties and the real member forces, calculate the real member deformations Al;.
3. Identify the displacement of interest, A.
4. Create a separate virtual system with a single virtual load, F*, which has the same location and direction as A.
5. Solve for the virtual member forces, P*i.
6. Use Eq. (18.6) and solve for A.

To illustrate this process, consider the truss bridge shown below in Fig. 18.5 whose member forces are the result of the
real applied loads.

3

B 78KN D B05KN F  3BIKN H  40BKN 381N | 305 kN N 78N P

c K M
+BI KN \ +24TKN 1 343N 1 +304 kN ] +394 kN 1 343N 1 +24TkN } +BI KN

36.6 kN 36.6 kN 36.6 kN 36.6 kN 36.6 kN 36.6 kN 36.6 kN

Fig. 18.5 — Real member forces. Note that each horizontal member is 3.75 m long and each
diagonal member is 3.29 m long.

displacement is in mm. Furthermore, the sign of the virtual
work is important, as a compressive force acting over a
tensile deformation produces negative work as does an
upwards external force acting over a downwards
displacement (and vice versa).
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Fig. 18.7 — Summary of calculations to obtain the midspan deflection of a truss bridge.
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If the deflection of the bridge at the midspan is required, a separate virtual system consisting of a single point load
applied downwards at the centre of the bridge will be used. This virtual system, including the resulting virtual member
forces, is shown in Fig. 18.6.

€

B 0B95KN D -L300KN F 2085kN H  -2780kN J 2085KN [ 1390KNN  -0.695KN P

K M [e)
0348 KN 1043 kN 738N 2433k 243N EERET 043RN +0.348 KN

P*=1kN

Fig. 18.6 — Virtual system of forces caused by a 1 kN load at the midspan.

Performing the calculations when applying Eq. (18.6) to a large system is commonly done using a large table, like the
one shown in Fig. 18.7. The column on the far right, which contains the virtual work, is the product of the calculated
member deformations, A, and the virtual member forces P*. By summing over the sixteen members in the table and
multiplying by two (to account for the work done by the sixteen members on the other side of the bridge), the total
internal work done was found to be 68.7 J. Equating this value to the external work and dividing by the 1 kN virtual
load results in a calculated deflection of 68.7 mm downwards.

78

CIV102H1F CIV102 Course Notes

September 2021

Lecture 19 — Where Have All the Soldiers Gone?

Overview

Several types of loading, such as a moving crowd of people, a windstorm, or an earthquake, apply dynamic loads to
structures. Dynamic loads, unlike static loads, vary in time, and may produce resonant effects which can magnify the
stresses and deflections experienced by the structure. In this chapter, a simple method to consider dynamic effects in
linear elastic structures is introduced.

Free Vibration
As noted in Lecture 7, the behaviour of a simple spring-mass system is governed by the following differential equation:

d?x(t)

s

+kx(t) =0 (19.1)

Where x(t) is a time-varying function describing the displacement of the mass, m is the mass, and K is the axial
stiffness of the spring. Solving Eq. (19.1) for a system which vibrates vertically results in a sinusoidal function with
amplitude A, natural frequency mnand phase shift ¢ which oscillates around the static displacement of the mass under
the force of gravity, Ao:

x(t) = Asin(w,t + @) + 4, (19.2)

ngers

mﬁig, 19.1 - Collapse of the Angers Bridge in France in
1850. The bridge collapsed as a battalion of soldiers was
marching across, leading to 226 deaths.

Note: A system undergoing free vibration is sometimes
The response described by Eq. (19.2) is shown in Fig. (19.1). Note that in this idealized system, there is no loss of  referred to as a Simple Harmonic Oscillator.

energy, and the mass will continue to oscillate until it is interrupted by an external action.

X(0) = Asin(wnt + §) + 8,

Vertical Displacement, x(t)
-

Time (sec)

Fig. 19.1 — Undamped free vibration.
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X(8) = Ae ™ sin(wyt + §) + 8,

[m
Tam2n [l
AzaeD)
Envelope of Decaying Amplitude

/ A) = Agehont

Vertical Displacement, x(t)
i

Time (sec)

Fig. 19.2 — Damped free vibration.
Damped Free Vibrations
In reality, vibrating systems will eventually come to a rest due to energy being dissipated by friction or other effects.
This gradual loss of energy in a vibrating system is caused by damping, which can be an engineered feature or an
inherent property of the system. The damping in a system is quantified by the damping ratio, g, which is the ratio
between the provided damping properties of the system and the m um amount of damping needed to prevent the
system from oscillating.

The differential equation for freely vibrating systems which have damping is a slightly modified version of Eq. (19.1):

d?x(t)
dt?

dx(t)
+2BVmk -

m

(19.3)

The solution to this differential equation is a sinusoidal function like the solution to Eq. (19.3), but has an amplitude
which decays to zero exponentially:

x(t) = Ae Port sin(wgt + ¢) + A, (19.4)

In Eq. (19.4), wa is the damped frequency which has units of rad/s. It is related to the natural frequency, on, by the
following equation:

g = w1 B2 (19.5)

Note: In civil structures, typical values of  range from 0 to
0.05 (5%). Mechanical systems, like vehicles or other
equipment, may have damping ratios which are 1.0 or
greater.

Note: The derivation of the differential equation and its
solution are beyond the scope of CIV102. This material will
be covered in future physics and dynamics courses.
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Forcing funclion: £(t) = F, sin(a) Forcing functon: F(¢) = , sin(at)
Stoady State Response: x(6) = DAF x Zsin(ut + ) + 4, Amptude = DAF = Staady State Response: x(t = DAF x Esin(ut + ) +4,
Forced Vibration Response
Free Vibraton Response
Free Vibration Response
- / Foravirion oo - R .
g LY s \
g ! g : \ .
£ N g / Y \
2 Ampliuce SF < ~ > ‘ - N
=¥,

Time (sec) Time (sec)

Fig. 19.3 — Forced oscillation for f/f, = 2.5 (left) and f/f, = 0.5 (right). Note the influence of the driving frequency on
the amplitude of vibration.

A plot showing the influence of f/f, on the Dynamic Amplification Factor is shown in Fig. 19.4. The first thing which
should be noted is that the highest value of the DAF is when the driving frequency is approximately equal to the
natural frequency — this is commonly noted as resonance. The second observation is that increasing the amount of
damping in the system tends to reduce the amplification, especially the peak value at resonance. Finally, the DAF is
equal to 1 when f/f, is equal to zero, and gradually becomes 0 when the ratio f/f, becomes large.

Designing for Dynamic Effects

Although calculating the complete response of a structure under dynamic loads is necessary in certain situations, in
most cases it is sufficient to only check the if maximum stresses which result do not cause the structure to fail due to
buckling or yielding. This can be done by calculating the effective static loading which produces the same effect on
the structure as the dynamic loads.

Consider a set of dynamic loads, Weta, Which has the following form:

Wiotal = Wstationary + Wo Sin(t) (19.10)
In Eq. (19.10), Wstationary refers to the component of the loading which does not vary in time, like the dead load of the
structure and the weight of the people as they stand on the structure. The amplitude of the loading is wo, which could
represent the impact loading on the bridge due to the crowd of people walking around, and the frequency of the impact
loading is o rad/sec (or f = /2x cycles/sec). Sample values of these terms for a single person as they walk are shown
in Fig. 19.5.

Note: w may be an area loading in kPa, a line load in kN/m,
or a collection of joint loads in kN.
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In civil structures, the value of p is usually very low, resulting in ed being essentially the same as on. The response
described by Eq. (19.4) is shown in Fig. (19.2), where it can be seen that the amplitude of vibration gradually dies out
and the mass eventually settles at x = A,.

Forced Oscillation
In the previous scenarios, the spring-mass system was freely vibrating without the influence of an externally applied
dynamic load. In reality, structures may be subjected to dynamic loading due to the movement of people crossing over
a bridge or the vibrations caused by an earthquake. The simplest form of dynamic loading is when the system is
subjected to harmonic or sinusoidal load with amplitude Foand loading frequency e in rad/sec (or f in cycles per
second):

F(t) = F,sinwt (19.6)

Substituting this loading into the dynamic equilibrium equation for a damped oscillator results in the following
differential equation:
d?x(t)
dt dez

dx(t)

+2p Nmk —— + kx(t) = F, sinwt (19.7)

The complete solution to Eq. (19.7) is complex and beyond the scope of CIV102. It is composed of two parts: a
transient component, which describes the behaviour shortly after the loading is first applied, and a steady state
component, which describes the response of the system after it has settled into a rhythmic pattern. The steady state
solution, which is particularly relevant for design, is shown below:

E
x(t) = DAF x fsin(wt +¢)+4, (19.8)
In Eq. (19.8), the DAF is a Dynamic Amplification Factor, which is calculated as:

DAF = —— (19.9)

The response of a vibrating system when subjected to time-varying loads is strongly influenced by the ratio of the
ng frequency, f, and the natural frequency of the system, fn, as it influences both the frequency of the resulting
displacement and the amplitude of the response through the DAF. To illustrate this, Fig. 19.3 shows the response of a
system when subjected to the same load but at different frequencies. The plot on the left shows a minor reduction in
amplitude for a driving frequency which is much higher than the natural frequency, while the plot on the right shows
a major increase in amplitude when the driving frequency is about half of the natural frequency.
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Fig. 19.4 — Influence of f/f, on the DAF for various values of p.

Using Eq. (19.8), the equivalent static load, weq, is equal to the stationary component of the loading plus an amplified
dynamic component. The amplified dynamic component is obtained by taking the amplitude of loading, wo, and
multiplying it by the Dynamic Amplification Factor to consider the interaction between the frequency of loading and
the natural frequency, which results in the following:

Weq = Wstationary + DAF X w, (19.11)
Evaluating the DAF is a straightforward process once the damping, B, and the natural frequency of the structure, fn
are known. Two simple equations for calculating the natural frequency for truss or beam structures are shown below
in Table 19.1. Once the equivalent static load has been obtained, then the member forces and stresses can be checked.

Table 19.1 — Simple expressions for calculating f, for truss or beam structures

Point Load at Midspan Uniformly Distributed Load
P kN
W, km
Schematic W
]
b &
Natural Frequency _1576
(H2) " /A,

** A, is the midspan deflection under Wsttionary in mm.

- blee £52020 {
Flg 19.5 — Time-varying loads caused by a person walklng
The stationary component of the load is 0.645 kN with an
amplitude of approximately 0.25 kN, occurring at a
frequency of approximately 2 hz.

Note: When designing a pedestrian bridge, the frequency of
loading caused by people walking is typically assumed to be
2 Hz. Therefore, unless the bridge contains components
which can provide significant amounts of damping, having a
natural frequency which is close to 2 Hz will lead to large
amounts of amplification and may cause the bridge to
collapse.
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Lecture 20 — Bending of Beams — Navier’s Equation — 1826

Overview

In this chapter, the derivation of Navier’s equation for calculating bending stresses in a beam is presented. Relevant
section properties are discussed, and the table of standard steel wide flange sections is explained.

Derivation of Navier’s Equation

As previously discussed in Lecture 10, when a member is subjected to pure bending by applying a moment to its two
ends, it curves to form the arc of a circle. If vertical lines were drawn on the member which are perpendicular to its
longitudinal axis, these lines would remain straight as the member curves and point towards a common point. The
assumption that those vertical lines — also referred to as plane sections — stay straight is known as the plane sections
remain plane assumption. In Lecture 10, we concluded that this assumption results in the following equation for the
longitudinal strain in the member, €, which varies linearly over the height of the member:

) = ¢y (20.1)
In Eqg. (20.1), ¢ is the curvature in rad/mm and y is the vertical distance from the location of interest and the neutral
axis of the member. The curvature is a measure of how curved a member is, being defined as the change in the
member’s slope per unit length, and the neutral axis is the location on the beam which does not experience any change
in length as the member bends. These terms are defined in Fig. 20.2.

For a beam made from a linear elastic material, the stress will be related to the strain by the Young’s modulus, E.
Applying Hooke’s law to Eq. (20.1) results in the following equation for the stress, which also varies linearly over the

height:
o(y) = Epy (20.2)
Consider a differentially small area of the cross section, dA, which is located a distance y away from the neutral axis.
The stress which it is carrying, &(y), will result in a differential force dF(y) acting through its centroid, which is
calculated as:
dF(y) = o(y)dA (20.3)
This force will also produce a moment about the neutral axis, dM(y):
dM(y) = ydF(y) = yo(y)dA (20.4)

Eq. (20.3) and (20.4) can be written in terms of the curvature and Young’s modulus by using Eq. (20.2), which results
in the following:

Fig. 20.1 — Bust of Claude-Louis Navier, who made many
important contributions to the fields of elasticity and
structural mechanics.

A I R =

cross section

9 verticallines spaced at Lo

Deformed length, L'xs

,'Radius of
~curvature, 11

dF(y) = EpydA (20.5)
dM(y) = Epy?*dA (20.6) Fig. 202 — Figure illustrating Robert Hooke’s 1678
hypothesis that when members are subjected to pure bending,
“Plane Sections Remain Plane”. Reproduced from Fig. 10.1.
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| Bending Moment
M

o =E(y)

Compression Foodh

= e

1- Cross Section 2. Flexural Stresses 3- Resulting Moment

Fig. 20.4 — Summary of how the bending moment carried by a member is determined if the distribution of strains is
known from the curvature. Reproduced from Fig. 10.3.

Steel Wide Flange Members

A common type of member used in beams and columns in structures is called a wide flange section. Wide flange
sections are commonly used in members which bend, like in beams, because their shape allows them to carry bending
moments very efficiently. The reason for this is because most of their area is concentrated in the flanges, which are
located far away from the centroidal axis, which is located at mid-height. Because the second moment of area is
calculated by multiplying the area by the square of the distance from the centroidal axis, moving the area away from
the neutral axis allows their contribution to I to be maximized.

Navier’s equation states that the bending stresses vary linearly over the height of the member and are equal to zero at
the location of the neutral axis. Because the maximum tensile and compressive stresses occur at the extremities of the
member, it is often convenient to simply calculate the stresses on the top and bottom of the beam only. If we define
Yiop and Yoot as the vertical distance from the neutral axis to the top and bottom of the member respectively, then the
largest flexural stresses can be found using the following equations:

My _ M

Omaxcop =L = @0.12)
o
My, M

Omazpo = " (20.13)
ot

In Eqg. (20.12) and (20.13), S is called the section modulus and allows the largest flexural stresses at the top and
bottom of the member to be calculated in a concise manner. For members having a horizontal axis of symmetry, Sop
and Spor are the same.

Tables 20.1 and 20.2 show the section properties for common types of steel wide-flange sections and sawn timber
sections respectively. The relevant properties for bending, 1, S and the radius of gyration r, are specified for both the
strong axis (x-x) and weak axis (y-y). The strong axis of bending, which refers to the orientation when the flanges of
an |-beam are parallel to the centroidal axis, or when the taller dimension for a timber section is the height, typically
has substantially higher values of 1, S and r compared to when the member is oriented along its weak axis.

Flange thickness,

777730

Web width, by —=f/<—  Overall depth, d

Z77LTZ77) L

y
Frange v,
L™
x

N

Fig. 20.5 — Steel wide flange beam cross section

Note: Wide-flange sections are often called I-beams when
used as beams in buildings and bridges. When inserted into
the ground to support structures built above, they are
sometimes called H-piles.

Note: Recall that the radius of gyration is defined as:
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Integrating dF over the cross-sectional area produces the axial force, N, which is carried by the member. When
subjected to pure bending, the axial force will be equal to zero, which results in the following equation:

N= J E¢ydA =0 (20.7)
A

In Eq. (20.7), the ¢ is a property of the member and E is a constant related to the material; if the member is
homogeneous, neither of these quantities will vary over the cross section, and hence they can be removed from the
integral. The resulting equation governs the location of the neutral axis when the member is subjected to pure bending,
requiring that the first moment of area taken about the neutral, or centroidal, axis of the member equals zero.

0= L ydA (20.8)

If we integrate dM in Eq. (20.6) over the cross-sectional area, we will obtain the bending moment which is carried by
the member, M:

M= f E¢y?dA (20.9)
4

We can evaluate Eq. (20.9) by first removing E and ¢ from the equation like we did to obtain Eq. (20.8). The resulting
equation, which we derived in Lecture 10, contains an integral term, the second moment of area of the cross section,
which is abbreviated as I

M= E¢f y?dA = El$ (20.10)
A

Eq. (20.10) illustrates the fundamental relationship between the bending moment carried by a member, M, and the
curvature, ¢. Combining Eq. (20.10) with Eq. (20.2) results in another important equation, which is the relationship
between the moment and the flexural stresses in the member:
My
a(y) = - (20.11)
Eq. (20.11) is called Navier’s Equation, which allows the flexural stresses in a member with second moment of area,

1, and carrying a bending moment, M, to be calculated. The resulting distribution of flexural stresses caused by
bending moments is shown in Fig. 20.3, and a summary of the derivation is shown in Fig. 20.4.

Centroidal Axis

M M

Fig. 20.3 - Distribution of flexural stresses caused by
bending moments.

Note: The relationship M = El¢ was previously derived in
Lecture 10.
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Table 20.1 — Steel Wide Flange Beam Table
%
Wide Flange Rolled Steel Beams & -
Dimensions and Section Properties by
L
Dimeasions | pesa T Swong s xex Wodk Asisyy | Tomion [ e
2 I3 I 1 7 £ I 5 1ol 7 W8
mm X kg mmJNm kN/m | mm? | 10° mm®| 10" man’ | mm [ 107 mm* [ 107 mm’ [ mm [ 10" man* |~ mm

W920 x 446(033[ 423 | 43 |240( 438 [s7000| 8470 | 18200 385 sS40 | 2550 |973| 26800 | 822
x365{916| 419| 33 (203 357 [a6400| 6710 | 14600 |380[ 421 | 2010 [o53| G400 | 813
x313(932|309| 34 (211 306 [39800| 5480 | 11800 |371| 170 | 1100 [e5a| 11600 | 806
B 806 |636| 5

x238{915| 305| 26 (165 233 [30400| 4060 | 8880 |365| 123 06 |636| s140 | 79
w840 x 320/ 862 401 | 32 19.7] 323 [42000( 5350 | 12400 357 349 | 1740 |912| 11500 | 764
x210[846293| 24 [15.4| 206 [26800] 3110 | 73%0 |3a1| 103 | 700 [620| 4os0 | 738

624
22400 2460 | s0 [331] 782 | s36 |s9a| 2220 | 722

176|835 292 19 [140| 1.72
w0 x 257|773 381 | 27 [166) 252 |32800 3420 | a0 [323| 250 | 1310 |8723| 30 | es9
x 173|762 267| 22 [144 170 |22100( 2060 | 400 |305| 687 | 515 [ssB| 2690 | e63
x141|753|265| 17 [132| 144 |18700 1660 | 4410 |208| 529 | 399 |532| 1se0 | esi
Wes0 x 217|695 355 | 25 |15.4] 213 [27700( 23 1000 |817| 4se0 | 618
x 152/ 688 1.49 [19400( 1510 ass |sa6| 2200 | 604
x 125] 123 16000 11 349 |525| 1iso | so4
W10 x 195] 191 [23900( 1680 811 |755| 3070 | ss4
x 155| 151 |19700( 1290 740| 1950 | 545
x 125| 9| 122 15900| 985 33 [497| 1500 | 537
X 101 60 095 13000 764 259 |76 1 | 527
W30 x 182) 178 |23100] 1240 808 [741| 3790 | 402
x 150543 147 |19200( 1010 659 |132| 2160 | 487
x 109] 06 13900 280 [461| 1260 | 471
x82) 10500 479 194 [a0| 530 | 463
W60 x 144|472{ 283 | 22 [13.6] 1.41 [18400] 726 s |674] 200 | 421
x 971466/ 193| 15 [11.4] 095 12300] a5 237 [431| 1130 | 408

195 [a23[ o1 | so4
120 (307 289 | 395

x82|a60[ 191 | 16 | 99 | 0.80 10300] 370
x61|as0[ 189 11 | 81 [ 0.60 | 7760 | 259

439 |626| 1490 | 376

W10 x 114{420( 261 [ 19 [ 11.6[ 1.12 13600 462
x 7441 173 |404| &7 | 364

3[150| 16 | 97| 073 [9ss0| 275
307|178| 13 [ 77| 058 | 7580
399 140| 9 |64) 038 | 4990 | 127

x 60)
x 39|

W360 x 314(399 401 | 40 |24.9] 3.07 [39900f 1100 | 5530 [166| 426 | 2120 | 103 18500 | 345
x12: 5 3 3 |60 2

2 6s | 200 |153| 615 | 478 [ea0| 2100 | 322
x79) 27 | 1m0 [150| 202 | 23 |ag9| ma | 307
x 64 176 | 100 [1as| 183 | 186 481 a2
x 453 I o1 [1a6| 818 | 957 |38 160 | 313
*33) 827 | 414 |1ai| 291 | 458 [264] 859 | 305

62 | 3830 [1a6| 25 | 1350|817 14800 | 304

11 25 | 10 [13s| s02 | sss |775| 160 | 282
x79) 1 | ne (32| 29 | s |es| e | 2m
x 60) 120 | 80 30| 183 | 1s0 [son| 307 | 274

% ;
b o | d || G| B8R
wasox il | 2 s o [ 1o fual eur | s fasol 2 | e
ela 5| el | B
B AR b
waoxsfanofaos| 11 o1 D e Y T e P
kb el Rl R

mps v G R ol o IR
wisoxarrlisn o [asfoas ol 172 | 20 {aal 556 | me fwal o | 1o
bR b b b B el el R e R

Note: The Torsion Constant will not be used in CIV102. The
Shear Depth will be discussed when shear stresses are
introduced in Lecture 25.
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Table 20.2 - Sawn Timber Section Table Lecture 21 — Calculation of Flexural Stresses

Overview

In this chapter, methods used to analyze the bending behaviour of more complex shapes are introduced. For these
members, Navier’s equation is still capable of determining the flexural stresses, but the location of the centroid and
the second moment of area must be determined first.

Sawn Timber Sections

Dimensions and Section Properties Centroidal Axis

Calculation of the Centroidal Axis
The centroidal axis, or neutral axis, is a key geometric property of a member when subjected to bending moments

o e Stuong Axis xx Weak Axisyy | Tomon] because other properties, like the second moment of area I, or the section modulus S, are calculated based on its
Designaion| Dimensions| Lowd i T 2l N location. For this reason, locating the centroidal axis is typically the first task done when approaching a bending
e = . A ; = sl o roblem. Recall from Lecture 20 that if the variable y is defined as the vertical distance between a point on the cross
o T [ O | [10° mn | 10° e | 10° | 10 s’ [16° : § variable y h . N
section and the neutral axis, then the following is true for members subjected to pure bending and no axial force:
292x498  12x20 0907 | 145000 | 2950 | 11500 |13| 1030 | 7030 [843| 2570
sf  x13| osi6 | 130000 | 2140 19| 923 | &0 |843 21%
G e ) BB ) 3R 8 08
292 x12f 0535 | 85300 | 606 | 4150 [s43| 606 | 4150 |843| 1030 0= J ydA (21.1) Fig. 21.1 — Definitions of A; and y; for evaluating the first
241x495  10x20 0749 | 119000 | 2440 | 980 [143| 577 | 4790 [e99| 1600 A moment of area using Eq. (21.2).
xaas|  xsl 06n | 107000 | 1770 | 7950 129 319 | 4310 06| 130
x394  x1¢l 059 | 95000 | 1230 | 240 [11s| 60 | 3810 06| 113 . . . o y .
x38) xid osto o | g0 | 470 loso) 40 | o |ee| s When performing calculations, we typically do not evaluate this integral analytically. A more convenient procedure
x 241 x10] 0365 [ 58100 | 281 | 2330 [eos| 281 | 2330 |69.6| 476 is to instead break up the cross section into various simple shapes, and replace the integral with an algebraic sum:
191x49s  8x20f 0594 | oa600 | 1930 | 7800 [143| 287 | 3010 |55 ses
x 44s| x 18 0.534 5000 | 1400 6300 (129 258 2710 1| 751 n
S s mmlw ) el A s
a2 km oaso | Ssaoo | 356 | 7o [sss| 10 | 1 1| a0 0= J’ ydA = Z Vil (212)
x241|  x10 0289 | 46000 | 223 | 1850 [eos| 140 | 1470 |35| 285 A
x 191 x8 0229 | 36500 m 11 1 m 11 1| 188 =1
toxass  6x18) 0301 | @300 | 100 | 460 [19f 102 | 1450 [s04f 325 " . . B . . Note: If yi is the distance from the centroid of the area
i 190 Daal ol o e Sl e 08 |8z In Eq. (21.2), the cross section has been broken up into n discrete area components, Ai, and yi is the vertical distance ote: 1f yi is the distance rom the centro d of the are
x29 izl 0357 | doo0o | 30 | oo [oas| des | S [dod| Tae from the local centroid of the area component and the centroidal axis of the overall cross section. This is shown in  ComPonent A to the centroidal axs of the whole cross
xa x1o 021z | o [ d6s | 1360 fe9s| 51 | T |dod| 1 Friomﬂ 1 P } section, then the summation term is an exact representation
x140] x6l 0123 | 19, 20 | 457 |d04| 320 | 457 [404] sa2 9. 211 of the integral equation in Eq. (21.1).
89x391  axie 0216 | 34400 | 430 | 220 (112 27 | su [257| 725 - . . 5 .
31 X1 o] oo Sass Hl [ isa o) S0k Saas] 257 Sesn Although Eq. (21.2) can be used to verify if the location of the centroidal axis has been correctly determined, it is less
xa x1f o1st | 20%0 | se3 | sto lens) 138 | 310 |27 4t useful for actually determining where that axis is. The equation can be repurposed to solve for the location of the
x 140) x¢| 0078 | 12500 | 204 | 291 |d04| 822 | 185 |257] 193 centroidal axis relative to the base of the cross section, ¥, using the following coordinate transformation:
X114 x o020 | 110 | 193|329 €70 | 151 |257| 138
x5 x4 ooso | 7920 | 523 | ms [as7] s23 | 17 257 sss
sx3  3x1qf o3 =y-y 213
i lngl o oo | |l e *=I=ve @9
i I ol i I s o B - 1
x40 oose | w0 | 14 | 200 ;‘2‘:‘ 06 | 956 [185| 868 In Eq. (21.3), yin is the vertical distance between the base of the cross section and the centroid of the area of interest.
8 J 00 | s | 3% | ais [257 15 | & 13| 4B These various definitions of y are shown in Fig. 21.2. Substituting Eq. (21.3) into Eq. (21.2) results in the following:
x33  2x14 oon | 1280 | 121 | 79 [073] 154 | ew1 |0 sz
x 28¢ x 1 10900 | 74.1 518 [826] 131 68, 10| 479 I
3 xid ool | mw | | 0 o8l 10 | Ses (o) 3 .
yM e ome e | | e o | s ) 2 0= -yl @14
x 114 x5 0.024 4330 469 823 (329 052 274 10| 165 i=
39| x4 0019 3380 223 502 (257 041 214 L0f L19 =t
6 x3f oo | 200 | oms | 259 |iss| 029 | 154 |1t0| 073
X34 x7[ 0008 | 1400 | o17 | sis [id| 017 | 915 |io| 02
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Table 21.1 — Equations for I, for simple shapes
Area, A Rectangle Circle
Centroidal Axis Local centroidal axis /* A\ " /\
ERRREE Py Second Moment i
- M of Area, lo Shape
o ) J
y b —
Yib
ol AXisofRotation bh3 nd*
- b b=T7 lo=5r
Fig. 21.3 — Schematic of a body rotating around an axis which is not its own local centroidal axis.
Fig. 21.2 — Definitions of terms used to calculate the location of the centroidal axis using Eq. (21.6). When calculating 1 for simple shapes, such as a rectangle or circle, Eq. (21.8) can be explicitly evaluated, resulting in
. . . ) § the simple equations shown in Table 21.1. However, structural members often assume more complex shapes whose
Expanding the term in brackets and rearranging produces the following result: values of | cannot be easily determined by using Eq. (21.8) directly.
n n
A, = Z A (215) A convenient way of calculating | for more complex geometries is to first break up the cross section into n smaller
A= p Yivhi - components and determine their inertia about the global centroidal axis, li. The value of I of the cross section is then
=1 =1 the sum of these individual components:
Finally, by recognizing that ¥ is a constant, we can remove it from the summation term on the left-hand side of the
equation, giving us a direct equation to obtain the location of the centroidal axis: (21.9)
(21.6) When evaluating Eq. (21.9), the equations for I, of rectangles and circles in Table 21.1 cannot be used directly because

they are the second moments of area about the local centroidal axes of the shapes. This is different from i, which are
the second moments of area about the global centroidal axis of the cross section. If the local centroid of the

:rqei?]la(zeléi)c;va Ilsnt:;? mztil;zzzﬁ;}pne;;o;;,semmn' An example of using Eg. (21.6) to obtain the centroidal axis of subcomponent area, Ai is a distance di from the axis of rotation like in the situation shown in Fig. 21.3, then Eq. (21.8)
P 921 . can be re-written as:
_ YipAityzpdy @17 =] (y+d)%dA (21.10)
A+ A, Ar
Calculating | for Complex Shapes: Parallel Axis Theorem Expanding the terms in brackets results in the following:
The second moment of area, 1, is defined by Eq. (21.8) shown below, where y is the vertical distance measured from
the centroidal axis of the cross section, and A is the area of the cross section:
I :f y? +2d;y + d?dA :f y2dA +f 2d;ydA +f d?dA (21.11)
Ay Ap gh Ai
I=J’ y2dA (21.8) o ) . N .
A In Eq. (21.11), the first integral term is the second moment of area of the component if interest about its local centroidal

axis, which we will define as lo,i. For the second and third integrals, the distance di is not a function of the area and
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can hence be moved outside of the integrals. The second term will then equal to zero, due to Eq. (21.1), which results
in the following equation:

Iy = lpy + Aid? (21.12)

Eq. (21.12) is called the Parallel Axis Theorem and allows the second moment of area of a shape to be calculated
about an axis of rotation which is parallel to its local centroidal axis. If the Parallel Axis Theorem is applied to each
of the n subcomponents of the cross section, the second moment of area of the whole section can be calculated as:

I:ill :Zu‘,,, +Ad?) (21.13)

=1 =

Fig. 21.4 shows an area as it rotates about an axis which is not aligned with its local centroidal axis. The total
movement involves (1) its translation around the axis of rotation along a circular path, and (2) its rotation about its
own centroid. Its total inertia is therefore the sum of its inertia against local rotation, lo, and its resistance to being
translated around the global axis, which is represented by the Aidi® term.

- ® —

Iy = Ad? L=l
I=1,+Ad?

Fig. 21.4 — Illustration of the various displacements associated with the terms in the Parallel Axis Theorem.

Calculating | for Members with a Horizontal Axis of Symmetry

Many common structural shapes, like the hollow tube and I-beam shown in Fig. 21.5, have a horizontal axis of
symmetry. This can be used to calculate | in a more convenient manner than using Eq. (21.13) by taking advantage of
the fact that the Ii terms in Eq. (21.9) may be positive or negative. This is illustrated for the hollow tube in Fig. 21.5,
where | is equal to second moment area of a solid rectangle defined by its outside dimensions minus the second
moment of area of a solid rectangle defined by its inside dimensions. Likewise, for the I-beam, I can be easily found
by subtracting the second moment of area of the inner rectangles from the second moment of area of a solid rectangle
defined by the overall height and flange width.

Note: Directly adding and subtracting components is only
possible if they share a common centroidal axis. If a
component which is being added or subtracted has a
different centroidal axis, the Parallel Axis Theorem must be
applied.
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Summary

When approaching a problem involving flexure, the location of the centroidal axis, ¥, and the second moment of area,
I, must be determined in order to calculate other relevant parameters like the stresses, strains and curvature. The
suggested procedure is as follows:

i Break up the cross section in to simple shapes with area Ai and whose local centroids are a distance yip from
the bottom of the member.

ii. Determine the location of the centroidal axis relative to the bottom of the member, ¥, using Eq. (21.6), which
is reproduced below:

iii. Calculate the distances between the local centroids of the component areas, and the centroidal axis of the
global cross section, di.
iv. Using the Parallel Axis Theorem, calculate the second moment of area, I, using Eq. (21.13), which is

reproduced below:
n
Do+ i
=1

95

CIV102H1F CIV102 Course Notes September 2021
&
¢ D = d o d2t ][
b —k b —F Jbeby &
hout t==i— = hou - hoﬁ
ot b P
1= loue = Iin
Shape lout lin
byd? b —b,)(d - 2t,)°
I beam I oo =b)(d—2y)
12 m 12
ouchd (bot — 26) (hoe — 26)°
Hollow tube = % In = %

Fig. 21.5 — Calculation of | for I beams and hollow sections by using horizontal symmetry.
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Lecture 22 — Shear Force Diagrams and Bending Moment Diagrams

Overview:

Having introduced the equations which allow the flexural stresses to be calculated if the bending moment carried by
the section is known, the concept of stress resultants is presented in this chapter. The relevant methods for calculating
the axial load, shear force, and bending moment diagrams for loaded members is presented.

Stress Resultants

Consider the simply supported beam shown in Fig. 22.1 which is carrying a variety of horizontal and vertical loads
and transmitting them to the supports. As we saw earlier in the course where a wire transmitted a tension force by
carrying internal stresses, this member will also be carrying substantial internal forces. These internal forces, which
are called stress resultants, can be found by drawing a free body diagram which cuts the member through a point of
interest.

e

Py

.

Fig. 22.1 — Simply supported beam subjected to arbitrary loading conditions.

Fig. 22.2 shows a free body diagram of a portion of the larger beam which has been cut at a distance x away from the
left support. In order to satisfy horizontal, vertical, and rotational equilibrium, it must carry internal horizontal and
vertical forces, as well as a moment at the location of the cut. The horizontal force which is parallel to its longitudinal
axis is called the axial load, N, the vertical force which is perpendicular to the longitudinal axis is called the shear
force, V, and the moment is called the bending moment, M.
w kN/m
Bending Moment, M
R, Axial Force, N

Shear Force, V

N

YL

| S—

Fig. 22.2 — Section cut of member, revealing stress resultants N, V and M.

Note: The procedure of cutting through the member to
determine the stress resultants is analogous to using the
Method of Sections to determine the member forces in a
truss.

Note: The shear force is obtained by integrating the shear
stresses carried by the member. Shear stresses will be
discussed in more detail in Lecture 25.
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Applying the equilibrium equations to the free body diagrams allows these stress resultants to be directly calculated
in terms of the applied loads and the reaction forces. If the free body diagram in Fig. 22.2 is valid from x = 0 until just
before the first downwards point load from the left, then the stress resultants can be calculated to be:

Z =0->N=R,, (22.1)
Z =0V =Ry —wx (22.2)
ZM“ =0->M=R,,x— (wx) (%x) (22.3)

As seen from Egs. (22.1) to (22.3), the stress resultants generally change along the length of the member, based on the
loading. In structural engineering, we typically use diagrams to show the change in the axial load, shear force and
bending moment along the member instead of using mathematical representations like in the equations above.

As noted in earlier lectures, the stresses carried by the material are related to the stress resultants; knowing how the
values of N, V and M vary along the entire member is necessary to determine when it will fail or to design it to safely
carry the applied loads.

Shear Force Diagrams

The shear force diagram represents the net vertical force which is carried by a horizontal member at a given location
and can be obtained once the reaction forces are known. The shear force is related to the vertical loads applied to the
structure, w(x) by the following relationship:

d
w(x) = av(x) (224)

According to Eq. (22.4), the change in the shear force at a given location is equal to the loading which is applied at to
the member to that section. From this we can conclude that a uniformly distributed load would cause the shear force
to vary linearly over the length, and a concentrated point load would cause a sudden change in the shear force diagram.
Using the Fundamental Theorem of Calculus, the change in the shear force between two points along the member
which are subjected to the loading w(x) can be calculated as:

B
AVyg =V =V, =f w(x)dx (22.5)
4

Eq. (22.5) provides a means to calculate the shear force at any point along the member based on the given loading.
Taking point A as the left side of the member where x = 0 and choosing point B as an arbitrary location which is x
away from point A, then Eq. (22.5) can be used to find the shear force at any location along the member using the
following heuristic:

Note: The sign convention for Eq. (22.4) and (22.5) is that
loads which act upwards will cause the shear force to
become more positive and loads which act downwards will
cause the shear force to become more negative.
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i U OO O O

R = w2

M
R R x Ry,=wi/2

BMD .|||I|||||||||||||H||“|H| H’ ||m|||||||||||||||n

My =3 x w2 x L2 = w8

M, = MitVxL,
= Vel

Fig. 22.4 — Examples of obtaining bending moment diagram using the shear force diagram.

Eq. (22.7) states that the change in moment between two points, A and B, is equal to the area underneath the shear
force diagram between these locations. Therefore, if the moment is known at the ends of the member, then the moment
at any location can be computed using Eq. (22.7) once the shear force diagram has been drawn.

Fig. 22.4 shows the same structures analyzed in Fig. 22.3 and the corresponding shear force diagrams and bending
moment diagrams. For the structure on the left, the bending moment diagram is a series of connected lines because
the shear force is constant between the applied loads. The change in moment between points is also equal to the area
under the shear force diagram between them. For the uniformly distributed beam on the right, the bending moment
diagram follows the shape of a parabola because the shear for diagram is linearly varying. Near the supports where
the shear force is high, the slope of the bending moment diagram is also high, and at the midspan, where the shear
force is equal to zero, the slope of the moment diagram is equal to zero, indicating that it has reached its maximum
value. For both structures, the bending moment diagram begins at zero on the left-hand side and returns to zero at the
right-hand side, indicating that the sum of moments over the member equals to zero, and the member is in rotational
equilibrium.

Note: This condition where the moment equals zero over a
support is only true if the ends of the structure are supported
by a pin or roller. In general, the moment will not equal to
zero over a pin or roller support if the support is located at
an intermediate location.

Note: The bending moment at the location of an internal
hinge is equal to zero because the hinge will freely rotate if
it tries to carry a moment.
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Fig. 22.3 — Examples of obtaining the shear force diagram using the reaction forces and applied loads.

The shear force in the member at a given location is the cumulative sum of the vertical forces
applied to the member from the left end of the member to the location of interest.

Fig. 22.3 illustrates the application of Eq. (22.4) and (22.5) to draw the shear force diagrams for two simple structures.
As a consequence of Eq. (22.4), the shear force has sudden jumps at locations where there is a concentrated reaction
force or load, as seen in the left example. In the right example, the beam is carrying a uniformly distributed load,
which results in the shear force decreasing linearly along the length of the beam. For both examples, the shear force
diagram returns to zero at the right-hand side, indicating that the sum of the vertical forces over the entire member
equals zero and the member is in vertical equilibrium.

Bending Moment Diagrams
The bending moment diagram is related to the shear force diagram by the following relationship:

V(x) = iM(x) (22.6)

dx
Eq. (22.6) states that the change in moment at a given section is equal to the shear force carried by the member at that
location. In regions where there are large shear forces, the moment will change rapidly. Because the shear force is the
derivative of the bending moment, a constant shear of VV = 0 will cause the moment diagram to be constant, a constant
nonzero shear force will cause the bending moment diagram to vary linearly, and a linearly varying shear force will
cause the bending moments to vary quadratically. Using the Fundamental Theorem of Calculus, the change in moment,
AM, between two points can then be related to the shear force, V/(x), according to the following equation:

.
Ay = My = My = [ V@ix @27)
A

Note: this heuristic can also be applied by using the right
ide of the member as the starting point instead of the left

Note: According to this definition, regions of high shear
correspond to “steep” portions on the bending moment
diagram, where the moment changes quickly. Regions of low
shear correspond to comparatively “flat” portions on the
bending moment diagram, where the moment stays
approximately the same.
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Sign Convention

Determining the sign of the shear force diagram and the bending moment diagram can be non-intuitive at first. Fig.
22.5 shows the sign convention for shear force; a general heuristic is that upwards-acting forces induce positive shear
forces into the member, while downwards-acting forces induce negative shear forces into the member.

Fig. 22.5 — Sign convention for shear force.

The sign convention for bending moments is shown in Fig. 22.6. Positive moment (which is unintuitively drawn below
the axis on a bending moment diagram) corresponds to regions where the bottom of the member is in tension, and
negative moment (drawn above the axis) corresponds to regions where the top of the member is in tension. When
determining the bending moment diagram from the shear force diagram, a useful heuristic is to note that positive shear
results in positive moment (which goes downwards on the bending moment diagram), whereas negative shear results
in negative moment (which goes upwards on the bending moment diagram).

+ve Moment -ve Moment

Draw above
axis

Draw below
axis

Fig. 22.6 — Sign convention for bending moments.
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Moment Area Theorem #2

Careful integration of the curvature diagram can also be useful for calculating the displaced shape of a member. Note: Displacements can be obtained by drawing a slope

Consider the curved member shown in Fig. 23.2 which has two points, D and T, defined. Points D and T are located ~ diagram using Eq. (23.3) and then integrating it to find a

at arbitrary distances xp and xr from the origin respectively in the horizontal direction. complete profile of the displaced shape of the member.
However, this process is difficult to do analytically except
for very simple geometries and loading conditions.

Lecture 23 — Deflection of Beams: Moment Area Theorems

Overview

Like trusses, obtaining the deformed geometry of a member which is bending can require very complex calculations.
In this chapter, the Moment Area Theorems, which permit the deflection of beams to be obtained in a relatively
straightforward manner, are presented.

Curvature Diagram

When working on a problem involving beams, the reaction forces, shear force diagram, and bending moment diagram
are typically obtained first. Using these diagrams, the flexural stresses can then be calculated once the relevant section
properties, like the location of the centroidal axis and the second moment of area, are known. All of this information
is necessary to begin calculating qualities relating the deformed shape of the member, like its displacement and slope,
at key points of interest.

The curvature of a member, ¢, is related to the bending moment, M, and the flexural stiffness, EI, at any given point
by the following equation:
M
=— 23.1
b=% 231
The curvature at every point can be calculated using the bending moment diagram and the flexural stiffness, producing
a corresponding curvature diagram.

Moment Area Theorem #1
Recall that the curvature of a member is a measure of how bent it is, and is defined as the change in slope, 6, per unit
length along the member:

de

= (23.2)

Using the Fundamental Theorem of Calculus, the change in slope between two points, A@as, is therefore defined as
the integral of the curvature between points A and B. This is mathematically defined in Eq. (23.3) below and represents
the area underneath the curvature diagram between the two points.

5
DOap = 05 — 0, = J (x)dx (233)
A

Eq. (23.3) is the first Moment Area Theorem, which states:

The change in slope between any two sections of a deflected beam is equal to the area under the
curvature diagram between those two sections.

The first Moment Area Theorem allows us to obtain the slope at any location using the curvature diagram if the slope
is already known at some point along the member. This is illustrated in Fig. 23.1.

Fig. 23.1 — Summary of Moment Area Theorem #1
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-
Spr = Almz xp()Ax = fD xp(x)dx 12.7)

The integral term in Eq. (12.7) represents the first moment of the area underneath the curvature diagram between
points D and T taken about point D. This quantity can be obtained by multiplying the area under the curvature diagram
between pomts D and T, then multiplying this area by the distance between its centroid and point D, .%, .This is
matt y rep using the ing equation:

T T
Spr :f xp(x)dx :fprf d(x)dx (12.8)
b b

Eq. (12.8) is the second Moment Area Theorem, which is illustrated in Fig. 23.3 and states:

For any two points, called D and T, along the length of a deflected beam, the deviation of point
D from the tangent drawn at point T equals the area under the curvature diagram between points
D and T, times the distance from the centroid of the diagram to point D (i.e., the first moment of
area about point D).

Although the second Moment Area Theorem does not allow us to directly calculate the displacements of a beam, it is
possible to express the desired displacement in terms of tangential deviations, 8o, which can be calculated using Eq.
(12.8). When using the theorem, points D and T must be correctly indicated in order to obtain the desired value:

e Diis the location where the tangential deviation is being measured
o Tisthe location where the tangent is drawn

Based on these definitions, the curvature diagram is integrated between points D and T, and that area is multiplied by
the distance between its centroid and point D, the location where the deviation is being measured.

Areas and Centroids of Common Shapes

When using the Moment Area Theorems, the areas and centroids of many different curvature distributions will need
to be obtained. Table 23.1 provides a series of simple expressions for the areas and centroids of many common shapes,
and is a convenient alternative to analytically integrating the curvature diagram. For distributions which are not shown
in the table but can be broken up into n simpler subcomponents, the two theorems can be applied by summing of the
contributions of the smaller parts to A8 or 8. This modifies Egs. (23.3) and (23.8) to be the following:

IR N BN D N R )

Spr = Apr x do

Fig. 23.3 — Summary of Moment Area Theorem #2.

Point D

Point T s ] D = 1700

|

for n

Fig. 23.2 — Curved member used to derive Moment Area Theorem #2.

Consider a small length of the beam, As, which is located at point T. The curvature at this location is equal to ¢(x).
If As is a short distance, then the change in slope of the beam between x = xr and x = Xt - ds is approximately equal
to the following:

AB(x = x7) = p(xp)As (12.4)

Fig. 23.2 shows this change in angle at point T. If we define the distance ror as the distance between point T and a
location directly below point D which is measured along the tangent to point T, then the arc length swept by this
tangent, Ad, over the angle A is equal to:

A8 = 1prA(x = x7) = 1prp(xr)As (12.5)

In structural engineering, members tend to have relatively small curvatures and associated displacements. This allows
us to approximate the distance along the member, As, as a distance in the horizontal direction, Ax. Furthermore, the
distance along the tangent, ror, is now the horizontal distance between points D and T, xor, and Aé becomes a vertical
distance Ay. These approximations allow Eg. (12.5) to be rewritten as:

Aypr = xprd(xpr)Ax (12.6)

Eq. (12.6) represents the vertical distance between a tangent drawn at point T towards point D as the tangent traverses
over a small angle d@. The total vertical distance between a tangent drawn at point T and point D for the curved beam,
8o, can be obtained if we repeat the process for the entire length of the beam between points D and T, resulting in
the following integral in the limit where Ax goes to zero:
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Table 23.1 — Areas and centroids of common shapes.

o

! o

bara 1y

clreulary Alﬂ
|
|

20,y = fjd’(x)dx - Z [ f ¢(x)dx]i (23.9) Lﬁf\” Lﬂ,
Sor = f:x(p(x)dx = %or J:(l)(x)dx - zn: [if ¢(x)dx] (23.10) R l ‘
= i
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Lecture 24 — Using Moment Area Theorems Scenario 1 — Known Horizontal Tangent due to a Support Condition
Overview: Consider the cantilever structure shown in Fig. 24.1 which is carrying a point load which is located at its tip. The fixed
This chay 1ér demonstrates how to use the Moment Area Theorems presented in Lecture 23 to solve for displacements end restrains the member from rotating, and hence the slope of the member at the support remains flat even when the
and mtat'i]ons in simple structures under common loading situations P P member curves under the load. Therefore, a tangent which touches this point will be horizontal, as shown in the second
P 9 . drawing in Fig. 24.1. Since the fixed end also prevents the member from translating at this point, the tangent effectively
acts along the undeformed length of the member.
General Procedure
In addition to being designed for strength structures must also have adequate stiffness so they do not experience Flexural stfiess, E1 P
unreasonable deformations when carrying loads. Two measures of a member’s deformation are its slope, 6, and how AN
much it has displaced from its original position, A. Na 8
The two Moment Area Theorems introduced in Lecture 23 provide the means to obtain quantities related to the displaced -
shape of a loaded member. The first Moment Area Theorem (MAT1) allows us to calculate the change in angle between LUndeformeg Geometry and Loods - Disoiaed Shone
two locations, ABag, by finding the area under the curvature diagram between these two points. This is mathematically - ouel
represented in Eq. (24.1):
B
AOyp = 05— 6, = f $(x)dx (24.1) ¢ |"‘|"”"m""‘l“|m||“||||\|||I\IIII\Illlmum..‘.. ..... ¢ g
A L n L
The second Moment Area Theorem (MAT?2) allows us to calculate the vertical distance between a point on the displaced 2-Cunvalure Diagram 4-Calculaton of angental doviaon -
member, point D, and a tangent which is drawn from another point on the displaced member, point T. This distance, Fig. 24.1 — Undeformed (left) and deformed (right) geometry of a loaded cantilever.
the tangential deviation of point D from a tangent drawn at point T, is equal to the area of the curvature diagram between
points D and T multiplied by the distance between its centroid and point D: Calculating the slope at any point along the member can be done using MAT1 using the knowledge that 6a = 0 due to
the fixed end. For example, the slope of the member at the tip, 0g, is equal to the area under the full curvature diagram
T as shown below:
bpr = f x¢(x)dx (24.2) x=L
D Ay =05 —0- 65 = f P(x)dx (24.3)
x=0
Although the two Moment Area Theorems allow displacement-related quantities about the structure to be obtained, they o ) . . )
do not allow us to directly calculate the slope or deflection of the deformed member at a specific point of interest. Evaluating this integral results in the following expression for the slope at the tip:
Instead, they must be used together with other information about the structure — such as how it is loaded and how it is )
% - 1 PL _PL
supported — to obtain the displacements and slopes. bo=gxLxr =Tk (244
A general procedure for calculating the slopes and displacements of a loading member is the following:
The horizontal tangent at the fixed end is also useful for evaluating the vertical displacement of the cantilever at any
i.  Calculate the reaction forces and draw the shear force, bending moment, and curvature diagrams point because the deviation of the displaced member from that horizontal tangent is simply equal to the displacement.
ii.  Sketch out an approximate shape of the deformed structure. For example, the displacement of the tip, Ag, can be written as the tangential deviation of point B from a tangent drawn
iii. Identify any locations where the deflection and slope of the member are known by considering the supports at the fixed end:
and loading conditions. Locations where the tangent is horizontal are particularly helpful. Ap= 0y (24.5)
iv.  Calculate the slope at a location of interest by using a known angle and Moment Area Theorem no. 1.
V. Expressthe desired displacement in terms of tangential deviations which can be calculated using Moment Area Evaluating the tangential deviation results in the following expression for Ae:
Theorem no. 2 and solve.
. o . . 1 PL\ (2 PLI?
This general procedure will be illustrated using three common scenarios. Ap= (E xLx ﬁ) X (§ X L) =35 (24.6)
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Scenario 2 — Known Horizontal Tangent due to Symmetrical Loading Conditions dec and doc are calculated by obtaining the area beneath the curvature diagram between points EC and DC respectively
When a structure is subjected to symmetrical loading conditions, this sometimes results in the location of a horizontal and multiplying this area by the distance from the centroid of the area to the location where the deviation is being
tangent being known. Consider the symmetrical beam shown in Fig. 24.2 which supports a point load at its midspan. It calculated. In the case of ec, this results in the following:
can be deduced that the maximum displacement occurs at the midspan, which implies that a tangent which touches this
point is horizontal. The deformed shape of the beam and this horizontal tangent are shown in the Fig. 24.2 as well. 5 (1 % L o PL ) (2 « L L) _5PL? (24.10)
FeT\27 27 4E1) T\37 27 2) T 96E1 '
Flexural P
stiffness, EI doc s calculated as:
A—s T D, E
% S s (le PL) 2 L PL? (24.11)
pc = |5 X5 X0 X(—X—):— 3
LL/ZJ‘UZ«L‘UZ«L‘UZ«J’ 2 2 4EI 3 2 48E1
1 - Undeformed Geometry and Loads 3 - Displaced Shape Substituting the results of Eqgs. (24.10) and (24.11) into Eq. (24.9) results in A being equal to:
ixLz+L2
T‘—fsx zqu( _5PL} PLP_ PL? sa1z
o o ’ E= 96EI  48EI  32EI @412)
M I Scenario 3 — No Known Horizontal Tangents . . N
Qmax = PL/AEI Qmax = PL/AEI M N . : i i : i N
In many instances, structures will be subjected to nonsymmetric loading, which means that the location of the maximum No(;e. Theh ThaXImUT Slllsplzcenmem doeshnm &cculr ngh;
2- Curvature Diagram 4 - Calculation of tangential deviation displacement (and therefore the horizontal tangent) cannot be determined without detailed calculations. An example of fhne eglew:'anl is Z:Sgl Ieio g:ro‘ (v(v)f(\:iccuhrscv;ni;et uzusa?lse k(JJs
Fig. 24.2 - Undeformed (left) and deformed (right) geometry of a symmetrically loaded beam this is the simply supported beam carrying a point load located L/3 away from its right support in Fig. 24.3. determined from inspection).
As with the previous scenario, the slope of the member at any location along its length can be determined by using the Flexural 3

slope at the midspan, 6c =0, as a reference. For example, the slope at the right support, 8o, is equal to the area underneath
the curvature diagram between points C and D:

stifiness, EI
N N8 | c
o %

J A

>
860y =6, =06, = [ pCoax @) S,
¢ - Displaced Shape

Evaluating the area underneath the curvature diagram between points C and D results in the following expression for

oc: ¢ ; ¢ A"—%xZUB’UB‘T
ot 111
P 2727 4kl 16kl ’ Gmax = § PLIEI max = § PLIEI J‘%xua
The horizontal tangent at the midspan is also useful for determining the vertical displacements at other points along the 2- Cunvature Diagram 4- Calculation of tangential deviation &,

member. Suppose the upwards displacement of the tip, A, is desired. As shown in Fig. 24.2, this displacement can be
calculated by taking the tangential deviation of point E from the tangent at C, and subtracting the deviation of the
support, point D, from the same tangent:

Fig. 24.3 - Undeformed (left) and deformed (right) geometry of an asymmetrically loaded beam

Despite the lack of a known angle or flat tangent, the displacements and slopes can still be obtained by determining the
deviation of one support from a tangent to the other support, like in the top right drawing in Fig. 24.3. If we assume that
the beam is experiencing small deformations, then the slope at support A is approximately equal to:

Ap=8gc — bpc (24.9)

107 108



CIV102H1F CIV102 Course Notes

September 2021

(24.13)

The tangential deviation dca can be calculated by dividing the curvature diagram into two triangles, resulting in the
following expression:

Sen = Avdy + Ayd (lszxZPL)x(L+1 2L)+(1><L><ZPL)><(2><L) pL (24.14)
= =(=xZLx==)x(=+=x= —xox ) x(2x2) = .
cam TR T 273" T 9Er 37373 2737 9EI 373/ B1EI

Therefore, 0 can be calculated using Eq. (24.13) and used as a reference to find the slope anywhere else along the
member:

4Pl

Oy = 24.15
A7 B1EI ¢ )

Suppose the displacement at the midspan, Ag, was of interest. This displacement can be obtained by drawing a similar
triangle which relates the triangle outlined by the tangent and dca to another triangle outlined by the tangent and the
vertical distance between the tangent and the original position of the beam at the midspan. Using similar triangles results
in the following equation:

Sca _ Do+

0, =2

1 05L (24.16)

Therefore, if the deviation of the midspan from a tangent drawn at support A is known, then Ag can be calculated by
using Eq. (24.16). This deviation, s, can be found by using MAT2, resulting in:

s 7(1><L><(3)><2PL)><(1><L)7PL3 (24.17)
5a=\2727\4) " 9e1) " \372) T 7261 ’

Re-arranging Eq. (24.16) substituting our results from Eqs. (24.14) and (24.17) allows Ag to be obtained:

7PL?

= 648El (24.18)

Note: the 3/4 factor in Eq. (24.17) is used to obtain the
curvature at the midspan by scaling the curvature
underneath the point load.
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Shear stresses produce failures which are very different than the failures caused by axial loads and bending moments,
which are instead associated with axial stresses. Some of examples of how shear causes structural failures are
illustrated in Fig. 25.4. The first mode of failure, which can occur in wooden members, is a failure caused by the
sliding of adjacent elements due to the horizontal complementary shear stresses. The second mode of failure is caused
by the diagonal tensile stresses associated with shear, which can lead to failures in brittle materials like concrete. A
third mode of failure which is not shown is caused by the diagonal compressive stresses associated with shear, which
may lead to diagonal buckling of thin members.

” S
Fig. 25.3 — Failures associated with shear stresses — sliding between the fibres of a wooden
beam (left) and diagonal cracking in a concrete beam (right).

Although Eq. (25.1) is a simple definition of the shear stress, calculating these stresses in beams which carry shear
forces is more complicated because these shear stresses are not constant over the cross section. Instead, Jourawski’s
equation, shown below in Eq. (25.2), must be used to find them:

ve

=

(25.2)

Derivation of Jourawski’s equation
Consider a beam which is carrying loads that are perpendicular to its longitudinal axis. Recall that the relationship
between the bending moment and the shear force is:
dM
=— 25.3
o (25.3)
Therefore, in regions where there are shear forces, the moment will be changing along the length of the beam. This
changing moment means that the flexural stresses will also be varying along the member as well.

Fig. 25.5 shows a portion of a beam which has a length of Ax which has been sliced out of a region of a beam which
is carrying shear. For simplicity, the cross-section of the beam is a rectangle with width b and second moment of area
1. On the left side of the beam, the moment will be equal to M, while on the right side of the beam, the moment carried
by the section will be slightly larger, M + AM.
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Lecture 25 — Shear Stresses in Beams

Overview

High shear forces carried by short members can lead to shear failures. In this chapter, the concept of shear stresses is
introduced and Jourawski’s equation for obtaining these shear stresses is derived.

Shear Stresses

Shear stresses are the stresses which occur in structures which are carrying a shear force which is perpendicular to
their longitudinal axis. Like axial stresses, o, the shear stress, =, is equal to the force applied parallel to a surface, V,
divided by the area over which it acts, A:

=Y (25.1)

Fig. 25.2 shows a small square element cut from a larger beam which is carrying vertical shear stresses on its left and
right faces. Although the stresses on the two sides satisfy vertical equilibrium, they produce a couple which tends to
cause the element to rotate. Therefore, complementary shear stresses exist on the top and bottom faces to satisfy
rotational equilibrium. These shear stresses can be resolved into tensile and compressive stresses which act diagonally.

| ] — NS

= <&

Shear stresses, T

Element in a beam
carrying shear

Resulting diagonal
stresses from shear

Fig. 25.2 — Shear stresses in beams (left), elements in pure shear (centre), resulting diagonal stresses (right).

Axial stresses, which are associated with axial strains, €, tend to cause materials to change volume by causing an
expansion or contraction of the material. This volume change does not however affect the overall shape of the material.
Shear stresses, which are associated with shear strains, v, tend to cause materials to change shape while maintaining
their volume. This is illustrated in Fig. 25.3.

' '
' '
| |
I Axial Strain € !
' '
' '
' '

Fig. 25.3 — Comparison of axial deformations (left) and shear deformations (right).

Large wooden beam

Dimitry Jourawski
1821 - 1891

Fig. 25.1 — Summary of Jourawski’s equation for shear
stresses in beams.
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Flexural stresses, o
v
M ﬂ L M+ am c C+AC
v
bud .
Ax Shear stress, T

Fig. 25.5 — Slice of a beam carrying bending
moments and shear forces.

Fig. 25.6 — Free body diagram showing how shear stresses
provide horizontal equilibrium.

We can obtain an expression for the shear stress at a particular depth of this beam by drawing a free body diagram
which cuts through this body to an arbitrary depth of interest, like the one shown in Fig. 25.6. The flexural stresses
applied to this body cause it to be in compression, and because the moment is higher on the right side, the body will
have a tendency to be pushed to the left. The net force which pushes the body to the left, AC, is caused by the increment
in moment, AM, and is equal to:

Y=Ytop Y=Ytop AMy
AC = J’ a(y)dy =f —dy (25.4)
y=vo y=Yo I

Eq. (25.4) can be simplified by removing the constants AM and | from the integral, and representing the integral,
which is a first moment of area about the centroidal axis of the member, as the quantity Q:

AM [¥=veop AM
Ac=— ydy ==-Q (25.5)
Y=Yo
In order to satisfy horizontal equilibrium, there must be a companion force which resists AC. This resisting force is
provided by the shear stresses acting on the underside of the body, which produce an equal and opposite force resulting
in the following:

AC = thAx (25.6)
Equating Egs. (25.5) and (25.6) and isolating for the shear stress results in the following:

AM Q

v @7

Note: The area over which the shear stress acts is equal to
the width of the beam, b, multiplied by the length of the body,
AX.
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If the length of our body approaches zero, then the term AM/Ax becomes equal to the shear force V due to Eq. (25.3),
resulting in Jourawski’s equation which is reproduced below:

=li aMQ _ve 25.8
T @9
Calculating the First Moment of Area, Q
Q is defined as the first moment of area of the portion of the cross-sectional area about the centroidal axis of the
member. The area considered is taken as the area from the depth of interest to the top or the member, or the area from
the bottom of the member to the depth of interest, yo:

Yo Yto;
Q=) =f ydA =f PydA (25.9)
Yo

Yot

Q can be evaluated by following the procedure outlined below:
i Determine the depth of interest where Q is being calculated.
ii.  Calculatethe area, A, of the cross section between the depth of interest to the top of the member; alternatively,
the area of the cross section between the depth of interest to the bottom of the member.
iii. Determine the distance between the centroid of the area found in step ii and the centroid of the cross section,
d

iv. C‘alculate Q using Eg. (25.10):
Q=Ad (25.10)

Distribution of Shear Stresses

Like the axial stresses caused by bending moments, the shear stresses carried in a member are not constant over the
depth of the cross section. This is because Q depends on where the shear stress is being calculated, and the width of
the member, b, may vary over the height of the member.

Consider a rectangular cross section, shown in Fig. 25.8, which has a height of h, a width of b, and whose centroidal
axis is located at a height of h/2 above the base. The value of Q calculated for an arbitrary depth located a distance y
from the bottom of the cross section is:

h y 1
0 = Ad = (by) x(———) =by(h—y) (25.11)
2 2 2

From Eq. (25.11), we can deduce three properties of Q which generally apply to all cross-sectional shapes:

i.  Qvaries parabolically over the height of the member.

QisequaltoOaty=0andy =h, i.e., Q is equal to zero at the top and the bottom of the member.

iii. The largest value of Q occurs at y = h/2. In general, Q is maximized at the centroidal axis of the member.

For rectangular members, b is a constant, and hence the shear stress distribution will be parabolic.

Note: When calculating Q, the area under consideration can
be broken up into n smaller areas whose local centroid is
easier to calculate. If this is done, then Eq. (25.10) becomes:

0= ZA‘d" (25.11)

Fig. 25.7 shows the application of Eq. (25.11) to find the
shear stress at the mid-height of a T-beam

] 4
ol e

Centroidal Axis

Quan = A + Aoty

Fig. 25.7 — Calculating Q for more complex shapes.

_Qmaxaty = yo

QDistibution

Fig. 25.8 — Derivation of Q for a rectangular cross section
and resulting distribution over the member height.
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Another important aspect to consider when working with timber structures is that wood has a wide range of mechanical
properties which cannot be precisely specified in design. Therefore, appropriate values of strength and stiffness to use
in design must be obtained by extensive testing, and larger factors of safety are typically employed.

Response of Wood to Loading

Timber members, often used as beams or columns in structures, typically need to support axial loads, bending
moments, and shear forces. Wooden members tend to perform well when loaded in ways which resemble the forces
which trees must resist in nature, namely high bending moments and axial forces which act along the direction of the
fibres. When subjected to axial forces which act parallel to the grain, wooden members are strong and stiff. This
allows them to carry high tensile forces, which occur in a wooden truss structures, and high compression forces, which
occur in columns in buildings.

In construction, large heavy objects are often placed on the ground and supported from below by smaller wooden
pieces. This loads the wood in compression perpendicular to the grain. Under this loading condition, the response of
the wood is much softer and ductile than when loaded parallel to the grain, especially in softwoods. This property
makes wood an ideal material to use when placing delicate objects on the ground. The differences in the compression
response of woods when loaded parallel to the grain and perpendicular to the grain is illustrated in Fig. 26.3.

Paralll o grain
e = 433 MPa

Stress (MPa)

Perpendicular (o grain,
ux = 53MPa

0% s 0% 1s% 200 2% 0% 3%
Strain (%)

Fig. 26.3 — Comparison of stress-strain response of wooden members loaded in
compression parallel to the grain and perpendicular to the grain.

When used in beams, timber members must carry significant bending moments and shear forces. Wooden members
are strong in bending because the resulting flexural stresses act along the fibres of the material. However, they are
susceptible to failing in shear because the fibres can be separated by the resulting shear stresses relatively easily. An
example of a wooden beam failing in shear can be seen in Fig. 26.4.

115

CIV102H1F CIV102 Course Notes September 2021

Lecture 26 — Wood Beams
Overview L1 Softwoods and Hardwoods
Along with steel and concrete, wood is one of the most commonly used materials for building structures. In this iivae,) 31, phows s mall blooks of wood fghly magulfiel. 1t e noficeable

. ! " o that these o picocs differ considerably in their cell tructures. They have boen
chapter, the various structural properties of wood are discussed, and tables of wood properties are presented and chosen as representing two distinct classes into which practically all timbers can
explained.

Properties of Wood

Wood has historically been used as a building material since perhaps the beginning of civilization due to its strength,
workability, and abundance in nature in many parts of the world. Woods can be classified as being softwoods or
hardwoods, with softwoods typically coming from coniferous trees and hardwoods from deciduous species.
Hardwoods are typically stronger, stiffer, heavier, and more difficult to work with than softwoods. Due to their
relatively low cost and ease of use, softwoods tend to be used extensively in construction, while the more expensive
hardwoods tend to be used for furniture, high-end finishes, and musical instruments due to their durability. Examples
of softwood and hardwood species are shown in Fig. 26.1.

(0 hardwond and (1) softeood showing
o prosent n (o) but absent i (3

Fig. 26.2 — Schematic showing the structure of hardwoods
(left) and softwoods (right).

Douglas Fir Red Oak

Fig. 26.1 — Examples of a softwood (Douglas Fir) and a hardwood (Red Oak).

The internal structures of both types of woods, shown in Fig. 26.2, resemble a series of fibres oriented along the height
of a growing tree. Within the hardwood, there is a mixture of larger vessels embedded in a tightly packed matrix of
smaller fibres, while the softwoods are composed of uniformly distributed vessels which are hollow to allow water
and nutrients to move throughout the tree. The dense fibres in the hardwood give the material its strength, stiffness,
and weight, while the relatively soft tubes in the softwood make it easier to work with.

Wood, being a naturally occurring material, differs in many ways from an engineered material like steel. Since the Note: The strength and stiffness of wood generally differ
structure of wood is biased along the height of the tree, the material properties of wood are different depending on the  parallel to the grain and perpendicular to the grain; because
direction of loading relative to the orientation of the fibres; this is unlike the uniform response which steel exhibits. these directions are orthogonal, wood is example of an
The property of having different mechanical properties in various directions makes wood an anisotropic material, ~orthotropic material, which is a subset of anisotropic
unlike steel which is an isotropic material. materials.
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Fig. 26.4 — Timber eam loaded under four-point bending. Note the shear failure on the left side of the beam which
has caused the previously vertical lines to separate, and the flexural failure at the midspan.

Wood Design Tables

As noted earlier in the chapter, wood is not an engineering product and hence has great variability in its material
properties. Fig. 26.5, which shows the failure stresses of 2110 small wooden specimens when loaded in flexure,
illustrates the range of strengths which may exist for specimens cut from the same tree. The measured strengths, which
are roughly normally distributed, were on average 50.2 MPa. However, the weakest specimens were less than half of
the average strength, and the strongest ones were approximately 60% stronger. To account for the variability in
strength, the 5" percentile strength is typically used in design, along with a factor of safety of 1.5.

Number of specimens
8 8 8

0 I et
3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
Modlus of rupture, in pounds per square inch

b) Frequency distribution of bending strength of green Douglas fir. 2110 small clear
5 cut froma gingle tyee. Shecl-term Loading:

Fig. 26.5 — Distribution of flexural strengths obtained by testing 2110 small wooden specimens.

Tables of material properties of many types of wood are shown in Table 26.1 and in Appendix D. The tables are
categorized as being for smaller members (top) and for larger members (bottom). This is because the material strengths
used in design vary depending on the size of the wooden members used. The 5" percentile strengths of smaller
members tend to be weaker because they are more strongly influenced by the presence of knots and other defects.
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In the tables, the 5% percentile Young’s modulus, Eos, and the average Young’s modulus, Eso, are provided in the far-
right columns. When determining the strength of a member, like when estimating its buckling load, Eos should be
used. Deflection calculations on the other hand should be done using Eso.
Table 26.1 — Wood Properties. Small specimens (top) and large specimens (bottom)
S ¢ €| . oy 250
w5 Percentile estimates of streaglhs
wnder oune wouth loadiug. For safe
working strgses reduct these braakyng
Stressel by foctor of sefety of [.5
2(9)_ Spocfidsrongthand modulas of st fordimenson b, thickess 3810 77 m, M-~
Species or Grade  Bending  Shear _ Compression __Tension  Modulusof
Spacies tho Longitudinal Paralelto_ Perpendicular Paraleito _ Eiasticly
Gombination f Grinf toGmnf Ganfy  Eo  Em
DougasFr  Seleci 175 1. 5 36 5 11000 8000
Larcn Snuctural =
No.tand 100 1 ECT S0 950 6000
I ¥ . e e il
Harv i Seleci 160 08 s i s Tl 780
Structura
Notand TIS 08 05 T8 8o Tosw 70
No.
Lodgepoe e, Seiei 6010 WS T8 W5 1000 7.0
or Ponderosa Pine Siructurel S
Notand 115 10 s 18 96 9000 6000
Noz .
Tack Pine St 160 10 s Ze 135 10500 7000
Siructural
Notwd s o W5 28 80 SE0 600
No2
TedPine eict 115 08 100 18 100 7000 5000
Siructral s s (i
Notand 80 08 70 s 70 600 400
No2 T ey
WhiePne™  Seleci 60 08 = s = 5500 4000
Stnuotural . o o aral =
Fa— = s = 3500 550
P No2 o o
+" Foruse I shoce-laiated decks oy
Tabi 131120
onzm e o =
minimum dmarsion 140 mm, WP
‘Species or Grds  Bendng Shear  Compresson  Tenon  Modulisol
Spacies o Longiudinal Perallel o Perpendicular Parallello _ Elasticity
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Dougas Fi Select 240 1.1 5 36 180 11000 7,500
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o %o i 90 36 50 950 6500
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Built-Up Sections with Glued Components

It is common to construct larger cross sections by fastening together smaller components together using glue or
mechanical fasteners like screws or nails. For these built-up sections, the ability of these connections to resist shear
stresses is crucial for the section to behave together as a whole instead of as several smaller pieces.

Glued surface:

[~ Glued surface—"| d

Q
=2t dy=

bﬂme

Calculation Method #1 Calculation Method #2
Fig. 27.2 — Calculating shear stresses for built-up sections with horizontal glued surfaces.
Either method will produce the correct value.

For horizontal glued surfaces, like those shown in Fig. 27.2, determining the shear stresses simply involves using
Jourawski’s equation at the depth of interest and taking b as the combined width of the interfacing surfaces. When the
surfaces are vertical, like in the situations shown in Fig. 27.3, the typical procedure for calculating Q still applies,
however the value of b to use is the total width of the vertical glued surfaces. In this case, the area of interest in the
calculation of A is now best described as the area of the cross section which will slide longitudinally if the glue fails.

‘ t Glued surface ‘ t
1 | 1

Dge = 2t b, =2t dy=dy=0 d

alue

Calculation Method #1 Calculation Method #2

Fig. 27.3 - Calculating shear stresses for built-up sections with vertical glued surfaces
Either method will produce the correct value.

Note: The methods described in Figs. 27.2 and 27.3 can be
used together when determining the shear stresses on glued

surfaces with both horizontal and vertical components.
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Lecture 27 — Shear Stresses in | Beams and Box Beams
Overview
In this lecture, procedures for calculating the shear stresses for more complex shapes are discussed.

Shear Stresses in Complex Shapes
For a member with second moment of area | and subjected to a shear force V, Jourawski’s equation can be used to
determine the shear stresses, T

_re

Ty

(27.1)

When Eq. 27.1 was used to find the shear stresses for a rectangular member in Lecture 25, b was constant over the
height and the change in shear stresses over the height was due to the varying first moment of area, Q, defined as:

Yo Yto,
QU =) =f ydA =f pyrflA (27.2)
Yo

Yot

In Eq. (27.2), o is the depth of interest, ybo and yop refer to the bottom and top of the cross section respectively, and
y is the vertical distance measured from the centroid of the cross section. For complex shapes, Q is typically calculated
by subdividing the area of interest into n smaller areas, Ai, whose centroids are each a distance di away from the
centroid of the cross section. Q is then calculated as:

Q z":A.di (27.3)

When calculating the shear stresses in more complex shapes like | beams, T beams or box beams, Egs. (27.1) to (27.3)
are still valid. However, Q must account for the geometry more carefully and b is the width of the cross section at the
location of interest. Fig. 27.1 illustrates an example of how Q and b are obtained when calculating the shear stresses
in the web of an I beam.

~—[ T
1
A—| |—% d;
|

d
)

Céniroidal Axis o b

Quen = Aydy + Aydy

L ]

Fig. 27.1 — Calculation of shear stresses in an | beam.

Note: Recall that Q can be calculated by integrating from the
bottom of the member up to the depth of interest, or by
integrating from the top of the member down to the depth of
interest. Both will produce the same result; this is reflected
inEq. 27.2.
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Distribution of Shear Stresses

Having a variable width over the height of a member has a pronounced effect on the shear stress distribution. For
these shapes, Q is still equal to zero at the top and bottom of the member, reaches its maximum at the centroid, and
varies parabolically in between. Applying Jourawski’s equation results in the somewhat unusual shear stress
distributions shown in Fig. 27.4. The shear stress distribution largely follows the shape of Q, but suddenly increases
when there is an abrupt reduction in width, and suddenly decreases for abrupt increases in width.

Th e
4

ump due to
change in width

Cross Section First Moment of Area, Q Shear Stresses, ©

Fig. 27.4 — Shear stress distributions for a wide flange (top) and T-shaped (bottom) sections.

Note: When determining the maximum shear stress in a
member with varying width, a good strategy is to check both
the narrowest part of the member, where b is minimized, and
at the centroidal axis, where Q is maximized.
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Lecture 28 — Thin-Walled Box Girders
Overview
Hollow structures are efficient, being lightweight yet strong and stiff. In this chapter, the development and use of
hollow members made from assemblies of thin plates is discussed.
Advantages of Hollow Structures
The obvious advantage of using hollow members is that they weigh less than solid members which share the same
outside dimensions. This reduction in weight however does not coincide with an equivalent reduction in strength and
stiffness. Consider a hollow square member which has outside dimensions b, and thickness t. Its cross-sectional area,
which is related to its weight, is equal to:
A=Db*—(b-2t)? (28.1)
The second moment of area, I, which is related to the member’s flexural stiffness and buckling strength, is equal to:
bt (b-20)*
= 1z (28.2)
Egs. (28.1) and (28.2) show that A and I do not decrease at the same rate as a solid member gradually becomes hollow;
in the case of the area, it reduces quadratically while the second moment of area follows a quartic relationship. These
relationships are plotted in Fig. 28.1.
1.0
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W .
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& @%
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3?04 1 1
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02 b
04 l J§
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00 01 02 03 04 05 06 07 08 09 10
Relative Wall Thickness, 2t/b
Fig. 28.1 - Relationship between A (red) and | (blue) and the wall thickness of a hollow square member.
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Lecture 29 — Buckling of Thin Plates
Overview
Buckling of thin plates is a phenomenon which occurs in thin-walled sections which are subjected to axial
compression, moment, or shear. In this chapter, the basic equations for characterizing the strength of plates are
presented for common cases.
Theoretical Background
In Lecture 14 the denvatlon of Euler’s equation for slender members was presented. Euler’s equation, which is
al bers with length L and flexural stiffness El, states that the buckling load for a
member free to rotate on its two ends is:
L

Ppi2El

i (29.1)

P =

For a plate which has a width of b and thickness t like the one shown in Fig. 29.1, the second moment of area will be
equal to bt*/12. Substituting this into Eq. (29.1) and rearranging terms results in the following equation for the buckling
Stress, erit:
w2E (t\?
oo =37 (7) @92
Consider the plate shown in Fig. 29.2 which is subjected to a horizontal compression stress which acts along its left
and right faces. In addition to the restraints on its two horizontal edges, the two vertical sides of the plate are restrained

from moving in the out-of-plane direction. For this scenario, if the width of the plate, b, is larger than its unrestrained
length L, then the required stress to buckle the plate will be equal to the following:

_ kn*E (t 2 0.3
Terit = T2 — 112 ) @93

Eq. (29.3) is the solution to a fourth order partial differential equation for the displaced shape of a thin plate subjected
to compressive stresses. This equation, whose solutlon was formulated by the American-Russian-Ukrainian engineer
Stephen Til is a two-di of Euler’s equation for slender one-dimensional members
buckling under compressive loads. Although the derivation of the solution is beyond the scope of CIV102, the key
idea is that k depends on the applied loading conditions (i.e., distribution of compressive stresses) and the boundary
conditions (i.e., how the edges of the plate are restrained from moving).

Fig. 29.1 — Rectangular plate loaded in compression with
no restraints on the sides

Note: y is the Poisson’s ratio of the material, which is a
measure of how much a material deforms in the directions
orthogonal to an applied load. For example, for a 2-D
material which is being stressed in the x-direction, the
transverse strain g is equal to:

a,
&y =—he = —pp (29.4)
Because the vertical surfaces are restrained from moving, &y
is equal to zero. This means that an additional y-direction
stress must be provided to make the net strain equal to zero:

0, = —&,E = pa, (29.5)

This produces a carryover effect in the x-direction, reducing
the longitudinal strain &x to be the following:

_o(1-ph)

& E (29.6)
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As shown in Fig. 28.1, reducing the area, and hence the weight, of members by making them hollow leads to smaller
reductions in the flexural stiffness. This makes hollow members useful for situations where the bending stiffness is
important, like in beams or slender columns which tend to fail by buckling.

Design Considerations

In many ways, thin-walled hollow structures behave in the same way as solid members: they may fail by yielding in

tenslon buckling is a possibility when in compression, and they may also fail due to high flexural or shear stresses.
c ion for hollow is that they may also fail due to local buckling of the thin walls. This

kmd of buckling is characterized by an instability of the walls th Ives, as opposed to ility of the complete

member, which is the case with Euler buckling. Thin plate buckling is discussed in more detail in Lectures 29 and 30.

Historical Development

A significant advance in the use of thin-walled box girders was in the Brittania Bridge, which was designed by the
Engllsh engineer Robert Stevenson and built between 1847 and 1850. Stevenson'’s bridge, shown under construction
. 28.2, consisted of two iron tubes running side by side over a clear span of 460 ft. This was a significant
sngineenng accomplishment because the previous record for the longest box girder was only 31 ft.

The elevation, plan, and cross section views of the bridge are shown in Fig. 28.3. The structure ran continuously over
several intermediate supports, being subjected to both large positive and negative bending moments along its full span.
In regions of positive moments, which typically occurred between the supports, the top of the bridge carried flexural
compression stresses. The negative moment regions occurred over the supports, and typically resulted in slightly
smaller compressive stresses which instead acted on the bottom of the member. To prevent the thin plates on the top
and bottom of the bridge from locally buckling, Stevenson had vertical stiffeners fastened to them, restraining them
from moving up and down. These stiffeners, which are visible in the cross section of the bridge, were more closely
spaced on the top flange because the flexural compression stresses were higher in these areas.

= Tazes iinain v s
Tan L Vni s » aran_d Caan A

[+

Foa—
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Fig. 28.3 - Elevation (top left), plan (bottom left) and cross section (right) views of the Brittania Bridge.

rian e L

Fig. 282 The Brmama Brldge under constructlon.

Fig. 28.4 — Surviving segment of the
original Brittania Bridge.
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ﬁ Restrained edge

Ocrit ——w] b e

L Restrained edge

Fig. 29.2 - Rectangular plate loaded in compression and restrained along its two horizontal edges.

Plate Buckling Equations:
For the plate shown in Fig. 29.2 whose sides are restrained from movement both in and out of plane, the solution to
the buckling coefficient k is the following equation:

K= (l.£+nﬁ)2 9.7

In Eq. (29.7), n is the number of half cycles which the buckled plate assumes, which is similar to Euler’s solution for
the buckled shape of one-dimensional struts. This equation is plotted in Fig. 29.3, and although it assumes a wide
range of values for different values of L/b and n, the lowest possible value is k = 4. Therefore, a reasonable lower
bound of the buckling stress which is appropriate for design is:

_ 4m%E (t 2 208
%o = 3= 5) 298)

Fig. 29.4 shows a rectangular plate which is loaded with a constant compressive stress on its vertical boundaries like
the one shown Fig. 29.2. However, only one edge is restrained from moving while the other edge is free to move. In
this situation, the free edge greatly weakens the plate under compressive stresses, and it fails at a stress of:
_ 0.4257°E (t)z 299)

Ocrit = 12(1— 1) \b 8

This factor, (1-4), therefore appears in the plate buckling
equation to account for the extra rigidity provided by the
restrained edges and the Poisson effect.

Held nioin la

Fig. 29.3 — Plot of k values for different L/b and n values
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ﬁ Restrained edge

[ b [ Oen

k Free edge

Fig. 29.4 - Rectangular plate loaded in compression with only one restrained horizontal edge.

Fig. 29.5 show a rectangular plate which, unlike the ones shown in Figs. 29.2 and 29.4, carries compressive stresses
which vary linearly from zero to a maximum on each side. The magnitude of the maximum stress which causes

buckling is:
2

_ 6m2E (t) 29.10)
Uni:_lz(l_uz) b (29.

High shear stresses carried by thin plates can also cause buckling due to the diagonal compressive stresses which are
caused by shear. The shear stress which causes a thin plate to buckle is:

Torie = %((ﬁ) + (é)z) (29.11)

In Eq. (29.11), h is the height of the plate, and a is the spacing between vertical stiffeners which prevent the plate
from moving in the out-of-plane direction. These terms are illustrated in Fig. 29.6.

2

Summary of Plate Buckling Equations

Fig. 29.7 contains a complete summary of the buckling stresses for the four situations discussed in Eqgs. (29.8) to

(29.11). The figure shows the various situations in which they can be used in the design of thin-walled box girder.

The first two equations apply to the flange which is in compression due to the flexural compression. The compressive

stresses from the moment may also cause the webs to buckle; the third equation can be used to predict when this might

happen Finally, the fourth equation should be used to determine if the shear stresses cause the webs to buckle. The
ion of these in design are di in more detail in Lecture 30.

Ot

ﬁ Restrained edge

k Restrained edge

Fig. 29.5 - Rectangular plate loaded in compression and
restrained on its two horizontal edges, but loaded with

Ot

linearly varying compressive stresses

Stiffeners, webs restrained

Terit

Terit

Fig. 29.6 - Rectangular plate subjected to shear stresses,
with a height of h. The plate is restrained from buckling in
the out-of-plane direction by vertical stiffeners which are

f——a—rHA

spaced apart by a distance a.
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Lecture 30 — Design of a Thin-Walled Box Girder

Overview

In this chapter, the procedures described in the previous lectures are summarized and applied to the design of a thin-
walled box girder. Failures associated with both failure of the materials and buckling the thin plates are considered.

Basic Design Considerations

Consider the simply supported thin-walled box girder shown in Fig. 30.1 which is subjected to a single point load at
its midspan. It is subjected to a constant shear force over its entire length and bending moments which linearly increase
to a maximum at the midspan.

\ | L]
L | '%

Fig. 30.1 — Example of a thin-walled box girder. Elevation (left) and cross section (right) views.

If the tensile strength of the material, cur*, the compressive strength of the material, ourr, the shear strength of the
material, Tur, and the shear strength of the material used to fasten the walls together, tm, are known, then there are
four modes of material failure which are summarized in Table 30.1.

The design of thin-walled structures must also consider the possibility of buckling of the walls. Recall from Lecture
15 that when a structure is subjected to compressive stresses, it will fail at the lower of the ultimate compressive stress
or the critical buckling stress:

Opail = Min{o;, Ocric} 30.1)
When designing struts for compression, we used the critical buckling stress, acrit, as the Euler buckling stress. For the

two-dimensional plates which make up the walls of a thin-walled box girder, ocricis instead taken as the appropriate
plate buckling equation from Lecture 29.

Table 30.1 — Summary of material failure modes

No. Failure Mode Failure Condition Relevant Design Equation
1 Tensile failure of walls o =00 My
2 Compressive failure of walls 0= 0y T
3 Shear failure of walls T= Ty vQ
4 Shear failure of fastening material T= T

Note: Some examples of fastening materials include glue,

screws, bolts, or nails.
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Fig. 29.7 — Summary of plate buckling equations used in the design
of a thin-walled box girder.
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Table 30.2 — Summary of plate buckling failure modes
No. Failure Mode Failure Condition Relevant Design Equation
5 Buckling of the compressive flange _ AmE t\?
between the webs 7= 12(1 — u?) (E)
6 Buckling of the tips of the _ 0.4257%E [t\? _ My
compressive flange 7= 12(1—u?) (E) 7= T
7 Buckling of the webs due to the 6n°E (5)2
flexural stresses 12(1 = p?) \b.
8 Shear buckling of the webs i (t)z + (t)z va
uckling W —12(17‘12) 0 2 ‘[—E

As noted in Lecture 29, large shear stresses can also cause the thin plates to buckle due to the resulting diagonal
compressive stresses. Therefore, the walls will fail at the lower of the shear strength or the critical shear buckling
stress:

Trail = Min{Tuge, Terie} (30.2)

Including the additional buckling considerations results in the four more possible failure modes which must be
considered in the design of the box girder, which are summarized in Table 30.2.

To illustrate the design process, we will try to determine the lowest value of P which causes our example bridge to
fail. To do this, we will express the maximum shear force and bending moments in terms of P and substitute these
relationships into the appropriate design equations:

(30.3)

(30.4)

Flexural and Shear Strength

The most straightforward modes of failure are associated with tensile and compressive failures caused by flexure.
Combining Navier’s equation with Eq. (30.4) and noting the top of the girder is in compression and bottom of the
girder is in tension results in the following values of P causing failure. Note that the subscripts on P correspond to the
failure modes described in Tables 30.1 and 30.2.
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Fig. 30.2 — Calculation of Q to determine the shear stresses in the web (left) and in the glue (right).
P,L
() oo ol
ohy=~—2—>P = 30.5)
ue T = ¢
P,L
_ (T) Yeop Tl
O =~——t— 5 P, =4 30.6)
it T 2 Deop ¢
The shear failures of the webs or the fastening material can be determined by using Jourawski’s equation and
calculating the appropriate values of Q and b. For the box girder being considered in this example, which is glued
together, the areas and distances used to calculate Q and b are shown in Fig. 30.2. Using these values, the forces
causing the shear failures of the web material and glue respectively are:
FK
() % welbeen
Ty =———— > Py =2—— (30.7)
b Ibcen ’ Qcen
Py
(7) Qgue -l bgue
Ty =—A—— P =2——— (30.8)
" Ibgrue * Qgiue
Failure Modes Associated with Plate Buckling
Calculating the loads which cause the structure to fail due to plate buckling is a matter of identifying which parts of
the structure are carrying compressive (or shear) stresses, and then selecting the appropriate equation based on the
distribution of these stresses and how the plate is restrained if applicable.
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Fig. 30.5 — Buckling of the webs due to flexural compressive stresses. Side (left) and cross section (right) views.

The flexural compressive stresses can also cause the webs of the structure to buckle. These webs, which are oriented
vertically, will experience compressive stresses which increase linearly from zero at the centroidal axis to a maximum
at the top of the web. This linear gradient of stresses suggests that the plate buckling with the coefficient k = 6 is the
most appropriate. The load causing these webs to buckle, Pz, is therefore equal to:

P;L
6m°E (bw,_,,,>z &) vean 24n2El (bw,_,,, )Z 01
- op, = )
12(1 = 1) \Yeop 1 T 12LYeop (1 = 1) \Veop
| f——a— | /7 Stiffener

]
I -

\— Restraint provided by stiffener Cross section
between stiffeners

Cross section at
stiffener location

Fig. 30.6 — Buckling of the webs due to shear stresses. Side (left) and cross section (right) views.

Choosing the appropriate equation to determine when the webs buckle in shear is straightforward because only one of
the four plate buckling equations is related to the shear stresses. Using Jourawski’s equation and equating the critical
shear buckling stress to the shear stresses in the web results in the following expression for Ps, where a is the spacing
of stiffeners which restrain the web from moving side to side:

P

Sn?E ((bw,.,b)er(bwe.,)’) (%) ocen b 20TEID, (( 1 )2+(1)2) o1z
_ O Py = Dweb () (2 .
12(1 = 1) \\hyep a 2byer ° 12Qcen( = 1?) By a

The strength of the structure is governed by the lowest value of P obtained from the eight calculations. Note that under
more complex loading and support conditions, more calculations will be required to obtain the failure load.

Note: Even when there is more than one web in the structure,
the width of one web is used in the plate buckling equations.
This is because the equations are used to describe the
strength of each individual plate which may buckle
independently of each other.

Note: In Eq. 30.11, the value of y used to calculate the
flexural stresses should be Yiop — tiiange. If the thickness of the
flange is small compared to yiwp, then the following
approximation is appropriate:

thange <K Ytop = Yeop = Yeop — lflange

Note: In design, appropriate factors of safety must be used
to determine the lowest value of P which can be safely
resisted by the structure.
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Fig. 30.3 — Buckling of the flange between the two webs. Top (left) and cross section (right) views.

Consider the region of the compression flange shown in Fig. 30.3 which is located between the two webs. Because
the flange is located at constant height above the centroidal axis, the flange experiences uniform compressive stresses
along its width from the bending moment. The webs, which are securely fastened to the flange from below, provide a
restraint which prevents the region between the webs to move up or down. These boundary conditions suggest that
the plate buckling equation with a coefficient of k = 4 is appropriate for determining when failure occurs. Therefore,
failure of this region of the bridge takes place at the following load:

Note: Recall that the compressive stresses caused by bending
do not vary over the width of the member because they are
only a function of the vertical distance from the centroidal
axis, y.

PsL
ant (mmge)z e, enm (tna“ge)z (309)
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Fig. 30.4 — Buckling of the free edges of the flange. Top (left) and cross section (right) views.

The tips of the flange, shown in Fig. 30.4, may also buckle due to the flexural compressive stresses. Like the flange
between the webs, they are also subjected to uniform stresses over their width. However, they have a free edge on one
side which can move up or down, meaning the plate buckling equation with a coefficient of k = 0.425 is more
appropriate for determining their strength. Therefore, the load causing these tips to buckle, Ps, is equal to:

P,L
0.42547%F (tna.,ge)z (%) y1ar » L7m*El (tf‘“ge)2 (30.10)
il = - Pg = g
1201 — 1) \ byue 1 © T 12LYe0p (1= 12 \ Do
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Lecture 31 — Building with Stone and Concrete

Overview

In this chapter, the unique characteristics of stone and concrete structures are discussed. Stone-like materials are
typically strong in compression, have low tensile strength, and have significant self-weight. The theory used to design
of arches and towers is presented.

Unique Characteristics of Stone

The existence of stone structures which date back hundreds or thousands of years is evidence of the many strengths
of these materials. Unlike organic materials like wood, or metallic materials like iron, stone is very durable and capable
of surviving for many years under harsh weather conditions. An example of a stone structure which has survived over
the centuries is the Alcantara Bridge in Spain, shown in Fig. 31.1, which was built in 106 AD, almost two thousand
years ago.

Although stone is strong and durable, it is difficult to transport, and shape. Furthermore, stones suitable for
construction are only found in certain geographical regions. A common alternative is to instead use concrete, a Roman
invention, which is manmade stone which addresses these shortcomings of natural stone. Concrete, which is made by
mixing cement, water, air, fine aggregate (i.e., sand) and coarse aggregate (i.e., larger rocks), can be readily formed
into any shape. Transporting its component ingredients is comparatively easy, making it a versatile material commonly
used in modern construction. The Romans, however, were also experts of using concrete for their structures. An  Note: Masonry construction refers to the use of stones joined
example of a Roman structure which demonstrates their mastery of the material is the Pantheon in Rome, which was by mortar to build structures. The mortar is used to position
built in 125 AD and still stands despite many wars and natural disasters occurring during its lifetime. the stone blocks together and fill in gaps as needed.

= T S E R
Fig. 31.1 - Alcantara Bridge in Spain.

Bultc 120-125 AD

Fig. 31.2 — Pantheon in Rome.

Stone-like materials, like concrete, limestone, granite, etc., share many common material properties. They are heavy
and tend to be formed into large structures, resulting in a substantial self-weight which must be included in their
design. They tend to be strong in compression but weak in tension, and when they fail in tension, they exhibit little to
no ductility. Stone structures have essentially the opposite characteristics of slender wires used to carry tensile loads,
as they favour compression instead of tension, they are heavy instead of light, and they are brittle instead of tough.
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True Theory of Arches

One common structural system used in buildings and bridges which uses stone is the arch. When designing arches,
the shape must allow the applied loads from above to travel to the supports below without causing any tensile stresses
in the structure. Although the Romans were experts at building arches, Robert Hooke later summarized his true theory
of arches with the following statement:

“As hangs a flexible cable, so, inverted, stand the touching pieces of an arch”

Hooke’s theory, shown in Fig. 31.3, illustrates the idea shape of an arch when supporting one, two, three, or four point
loads. Under a uniformly distributed load, the ideal shape becomes a parabola, the same way a suspension bridge
carries the uniformly distributed weight of a deck using a parabolic cable. The famous Catalan architect, Antoni Gaudi,
made use of Hooke’s theory of arches when designing his stone cathedrals. Fig. 31.4 shows one of his string models
that he used to determine the form of his buildings.

Fig. 31.4 — Model used by Antoni Gaudi to design stone cathedrals. The built shape was obtained by flipping the
model upside down.

Design for Combined Axial Load and Bending Moment

Although the poor tensile strength of stone reduces the ability of masonry structures to resist large bending moments,
their substantial self-weight allows some structures, like towers, to overcome this weakness. Consider the tower shown
in Fig. 31.5, which is subjected to large horizontal forces from a severe windstorm. At the base of the structure, there
must be a significant bending moment, Mbase, to prevent the tower from tipping over, and a high horizontal shear
force, Vbase, to prevent it from sliding. There must also be a large vertical reaction force provided by the ground to
support the self-weight of the tower, which places the tower in compression.

abeecddecceefggiiiiiiillmmmmnnnnnoo
presssttttttuunuuunux

‘ut pendet continuum flexile,

sic stabit contiguum rigidum inversum,
‘As hangs a flexible cable, so, inverted,
stand the touching pieces of an arch’.

Fig. 31.3 — Hooke’s theory of arches.
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Lecture 32 — Reinforced Concrete: Material Properties
Overview
In this chapter, the material properties of concrete, steel, and reinforced concrete are discussed.

Reinforced Concrete

Concrete is the most commonly used building material in the world, having applications in the construction of roads,
bridges, buildings, dams, tunnels and more. Besides being both strong and durable, concrete can be formed into any
shape, offering a versatility which cannot be matched by other materials like steel and timber.

Although concrete, being a stone-like material, has poor tensile strength, this weakness can be addressed by providing
reinforcement in the form of steel bars which are cast into the concrete. Concrete containing internal reinforcement is
typically referred to as reinforced concrete, while concrete without reinforcement is typically referred to as plain
concrete.

Material Properties of Concrete
The stress-strain response of concrete under axial load is shown in Fig. 32.2. In compression, the stress-strain response
is linear until a stress of approximately 40% of the ultimate compressive stress is reached; after this, the behaviour is
highly nonlinear. In tension, the behaviour is linear elastic until the concrete fails by cracking, which typically occurs
at a stress around 2 to 3 MPa.
Tensil Strength __
fi=033Jf

o= 47307

Concrete Stress, /. (MPa)

Compressive Strength
[

Concrete Strain s,
Fig. 32.2 — Stress-strain response of plain concrete under axial load.
When building concrete structures, it is customary to cast small concrete cylinders made from the same concrete,

which are tested later to measure the material properties of the concrete present in the actual structure. These cylinders
are tested in compression to determine the compressive strength of the concrete, fc’, which is then correlated to other

Fig. 32.1 — Large reinforced concrete beam in the Bahen
Centre for Information Technology at the University of
Toronto. Details of the internal reinforcement are shown.

Note: Although steel is typically used as reinforcement,
other materials can be used as well. Common alternatives
include using glass fibre reinforced polymer (GFRP) bars
or embedding steel or polymer fibers into the concrete to
create Fiber Reinforced Concrete (FRC).

Note: The notation for stresses for concrete structures
differs from the notation used for the rest of the course.
Axial stresses are represented as f and shear stresses are
represented as v, instead of & and  respectively.
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Fig. 31.5 — Stone tower subjected to high wind forces (left) and free body diagram at the base (right).

At the bottom of the tower, the axial force, N, is equal to the weight of the tower above. Using the unit density of the
material, y, the stress at the base caused by the axial load, en, can be calculated to be:

N_ Vy

oy =——=

" - (31.1)

In Eq. (31.1), Ve is the volume of the tower, and the minus sign indicates that these stresses are compressive. In
addition to the stress from the self-weight, there will also be stresses at the base of the tower due to the presence of
the bending moment. These stresses, am, can be calculated by using Navier’s equation:

M
o= Ty (31.2)

The total stress in the tower at its base can be obtained by simply adding the two effects together if it is linear elastic.
Therefore, the stress on the side where the wind blows, which would normally be in tension, is:

M
o=——+ # (31.3)
And the stress on the side opposite to the wind, which would normally be in compression, is:
N MYrignt
=————" 314
7 T (31.4)

Although the tower is subjected to a high moment, the stresses may remain compressive if the tower is heavy enough.

Note: If the cross-sectional area of the tower is constant over
its height, h, then the stress at the base can be calculated as:

ey _Ahy

°TaTac

Note: Due to the axial load, the stress in the member at the
centroidal axis will no longer be equal to zero. This can be
shown in Fig. 31.6.

and bending moment
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properties using empirical equations. Concrete which has a compressive strength of less than 40 MPa is normal
strength concrete. Special circumstances may necessitate the use of high strength concrete, which has a higher
compressive strength that can exceed 100 MPa.

Given the concrete compressive strength, fc’, a common empirical equation to estimate the tensile strength of the
concrete, f’, is:

fl=033/f 32.1)

Like the tensile strength, the Young’s modulus of the concrete, Ec, can also be correlated with the compressive strength
of the concrete. Although there are many equations in the literature which express Ec as a function of fc’, a common
expression used for concrete whose strength is 40 MPa or less is:

E. = 4730,/f! (32.2)
When using Eq. (32.1) and (32.2), fi’ and Ec will be in units of MPa if fc” is also in MPa.

Material Properties of Reinforcing Steel

To reinforce concrete members, steel reinforcing bars are bent and tied together to form complex, interlocking cages
like the one shown in Fig. 32.3. The stress-strain response of these steel reinforcing bars under axial load is shown in
Fig. 32.4. Reinforcing steel bars, colloquially referred to as rebars, are made of mild steel and are manufactured to
have surface deformations to help anchor them into the surrounding concrete. The Young’s modulus of the steel is
taken as Es = 200,000 MPa, and the yield strength of Canadian reinforcing bars is typically f, = 400 MPa in both
tension and compression.

Yield Stress, /; 1

E. = 200,000 MPa

Steel Stress, /,

14

Steel Strain, ¢,

Fig. 32.4 — Stress-strain response of reinforcing steel under axial load.

Note: Performing tensile tests on stone-like materials is very
difficult. For this reason, it is more common to correlate the
cracking stress with the compressive strength.

Note: Another equation for E. which appeared in previous
versions of the CIV102 notes is the following:

E, = 3320,/f] + 6900 (32.3)
When solving reinforced concrete problems which do not

provide Ec in the question, use Eq. (32.2) to estimate E if
needed.

Note: Although Es is 200,000 MPa for all types of steel,
different countries use different steel strengths. For
example, in USA, it is customary to use steel which has a
yield strength of 60 ksi (414 MPa).

T N Y
Fig. 32.3 — Reinforcement cage comprised of rebars which
are bent and tied together.
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Table 32.1 — Common Canadian Reinforcing Bar Information

Designation Llne(irglljr;]e;sny Nomln?rlnlr:]):)ameter Cross-S(e:"t[iTc]er;al Area Cracking—_] .
10M 0785 113 100 & = Responsar
15M 1570 16.0 200 i steel alone
20M 2.355 19.6 300 @
25M 3.925 25.2 500 i
30M 5.495 299 700 S
35M 7.850 35.7 1000 3
45M 11.775 43.7 1500 £
55M 19.625 56.4 2500 2

Steel producers fabricate rebar into many standardized sizes. Table 32.1, which is also found in Appendix G, shows
the common types of rebar which are available in Canada. The bar number roughly refers to the diameter of the bar,
although the actual diameter is usually slightly larger. The smaller bars (10M and 15M) are usually used for
reinforcement which needs to be bent into compact shapes, while the larger bars are more difficult to bend and are
usually used where straight bars are needed.

Material Properties of Reinforced Concrete

Fig. 32.4 shows the stress-strain response of a concrete member which is reinforced with steel bars. Its response under
compression is similar to that of plain concrete because the steel only provides a small increase in compressive
strength. In tension however, the response is substantially different, especially after the concrete cracks. When this
occurs, the tensile force is carried by the steel instead of by the cracked concrete, which allows substantial tensile
forces to be carried by the material. The response of the material becomes also ductile because failure in tension occurs
due to the steel yielding instead of the concrete cracking. The presence of steel also affects the pattern of cracking and
the sizes of the individual cracks. As the amount of steel in the concrete increases, more cracks form which have
smaller widths because the elongation of the member is distributed over many cracks, instead of being localized at
one location.

measuring gauges are attached to the surface of the concrete, and labels indicate the measured crack widths in mm.

Reinforced Concrete Strain, £qc

Fig. 32.5 — Stress-strain response of reinforced concrete
under axial load.
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Lecture 33 — Reinforced Concrete Members — Design for Flexure

Overview

In this chapter, the behaviour of reinforced concrete structures subjected to bending moments is described. A simple
procedure which can be used to design the flexural reinforcement or estimate the flexural strength of a reinforced
concrete member is presented.

Overview of Flexural Behaviour

The response of a reinforced concrete member subjected to bending moments can be described as having three distinct
phases, which are shown in Fig. 33.1. For small loads, the stresses in the concrete will be low and the member will
exhibit linear elastic behaviour. During this portion of the member’s life, the presence of the reinforcing steel has little
influence of the flexural response, and Navier’s equation can be used to determine the stresses in the concrete.

At larger loads, the flexural stresses obtained by using Navier’s equation will exceed the tensile strength of the
concrete, and vertical cracks will form. After this happens, the member will continue to carry bending moments with
the concrete carrying the compression forces on one side of the member, and the longitudinal steel reinforcement
carrying the tension forces on the other side of the member. During this stage, the compressive stresses in the concrete
and the tensile stresses in the steel are relatively low, and they will both behave in a linear elastic manner. This sort
of load-carrying mechanism is sometimes referred to as the cracked elastic state of the member.

Under larger loads, the reinforcement will begin to yield, and the concrete will begin to crush, which results in a
nonlinear response being observed. If the steel yields before the concrete crushes, then the failure mode will be ductile,
and large deformations will occur before the beam finally breaks. If the opposite is true, then the member may fail
more suddenly. Analyzing the nonlinear behaviour requires more advanced tools and is beyond the scope of CIV102.

The primary task involved when designing for flexure is to determine how much longitudinal steel is needed to carry
the bending moments. This steel is provided on the side of the beam experiencing tension, so that the tensile forces in
the steel and the compressive forces in the concrete together resist the applied moments.

Cracked Elastic Response
To analyze the flexural behaviour of a reinforced concrete member after it has cracked, the following assumptions are
made:
i.  Plane sections remain plane, and hence there are longitudinal strains which vary linearly over the height of
the member
ii.  The concrete cannot carry any tensile stresses
iii.  Thesteel is perfectly bonded to the concrete, so that the concrete and steel experience the same strain at every
point

Consider the cracked reinforced concrete beam shown in Fig. 33.2 which bends as it supports the applied loads. The
bending moments carried by the member causes vertical cracks to form on the bottom of the beam. To resist the
applied loads after cracking occurs, longitudinal steel reinforcement is required. The steel carrying the flexural tension
has a total area of As and the distance from the extreme compression fibre of the beam to the centroid of this
reinforcement is equal to d.

(@ Nonlinea’ pehaviou’

$
@g Yielding of Longitudinal
Reinforcement
o &
g &
H] 3
3 )
] &
H S
< N

Midspan Displacment, A

Fig. 33.1 - Typical load-displacement plot of a reinforced
concrete beam subjected to bending.

l{ L AU =
Fig. 33.2 — A reinforced concrete beam tested by Garratt et
al. which failed in flexure. Note the large cracks and
displacements, as well as the crushed concrete at the top of
the beam.
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32.7 - Large slab strip tested at the University of Toronto by Quach et al. The right-hand side contained no vertical
reinforcement and failed in a brittle manner.

The heavily reinforced beam shown in Fig. 32.6 illustrates the ability of internal reinforcement to improve the
behaviour of concrete members after cracking. This beam, loaded under moment and shear, was capable of carrying
significant forces after cracking. Because large amounts of steel were used to reinforce it, the shear and flexural
deformations are distributed over many narrow cracks. This member failed in a ductile manner once the steel began
to yield.

Fig. 32.7 shows a reinforced concrete beam built without vertical reinforcement in its East (right) span. Because there
was no vertical reinforcement, the deformations caused by the shear forces were concentrated at a single wide crack,
which ultimately caused its failure. This member failed in a brittle manner once widening and sliding along the crack
reduced its load-carrying capacity to be less than the applied load.

The benefits of using steel reinforcement in concrete can be summarized below:
i It provides tensile capacity in a member after the concrete cracks.
ii. It controls the crack widths after cracking occurs, so that tensile deformations are distributed over multiple
narrow cracks, instead of fewer wide cracks.

In design, it is customary to use different factors of safety associated with the stresses in the concrete and in the steel.
Concrete, whose strength can be affected by factors like how it was cast, variances in the mix and the curing
environment, is typically associated with a larger factor of safety compared to steel, which is a typically manufactured
in controlled conditions. In CIV102, we will account for these by using partial safety factors to reduce the strength
of concrete by 0.5 and reduce the strength of steel by 0.6 when designing reinforced concrete members.
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Fig. 33.3 — Schematic of a cracked reinforced concrete beam subjected to bending moments, showing the
distribution of strains, stresses and forces.

As the cracked beam curves, there will be longitudinal strains which vary linearly over the height of the member. If
the curvature, ¢, is known, then the longitudinal strain, &, at a distance y from the neutral axis will be equal to:

&= ¢y (33.1)

Although this is the same equation which we used in Lecture 10 for elastic beams, the neutral axis of the cracked
member will not align with the centroidal axis of the cross section because the cracked concrete cannot carry any
tensile stresses. To determine the location of the new neutral axis of the cracked member, we need to find the
corresponding strain conditions which guarantee that the net axial force in the member is zero.

If we define the distance from the extreme compression fibre to the neutral axis as kd, then we can express the
curvature of the section as:

ciop + &5

b= I;d === (33.2)

In Eq. (33.2), &.0p is the concrete strain at the top of the section, and & is the strain in the steel, which is located a
distance d from the top of the section. Rearranging Eq. (33.2) results in the following equations for these strains in
terms of the curvature and kd:

Ectop = Pkd (33.3)

& = pd(1—k) (33.4)

Using Hooke’s law, the stresses in the concrete and steel can be obtained once these strains are known. The concrete
carries compressive stresses which increase linearly from 0 at the depth of compression to a maximum at the top of

the section, and the steel carries a tensile stress at the location of the bars. The net compressive force in the concrete,
Cc, can be obtained by integrating the concrete stresses over the cross section, resulting in:

Note: Here, the strains in the compression region, like cop,
are taken as positive numbers even though it is understood
that they are compressive.
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1
C. = f fodA, = J’ Ececdd, = 5 bkdE o0 (335)
e e

The net tensile force in the steel, Ts, can be obtained by multiplying the steel stresses over the cross section, which
results in:

T, = fill; = Ege A (33.6)

For a member subjected to pure bending, there will be no net axial force and therefore the compressive force in the
concrete must equal to the tensile force carried by the steel. Therefore, setting Egs. (33.5) and (33.6) to equal each
other and substituting the expressions for c0pand & into the resulting equation yields:

1
3 9b(kd)’E; = $EAd(1 ~ k) 33.7)
Eliminating ¢ from Eq. (33.7) and rearranging terms results in the following quadratic equation for k:

PR b S =0 (33.8)
2 e

n==s (33.9)

Furthermore, we will define the quantity of longitudinal reinforcement, p, as:

As
p=17 (33.10)
Substituting these new quantities into Eq. (33.8) allows it to be rewritten in the following form:
1
Ek2+knpfnp =0 (33.11)

Solving for Eq. (33.11) using the quadratic equation results in the following equation for k:

k= (np)?+2np—np (33.12)

Having found the required value of k so that the net axial force carried by the member equals to zero under pure
moment, the bending moment carried by the member, M, can now be obtained by using fact that the compression

b

—
T%%%%%Z%%%:

o
Posiive moment egions Negative mament regions
(floxual ansion o botom) (oural ension o 1)

Fig. 33.4 — Definition of b.
Note: b is defined as the width of the of the compression

side of the member. Therefore, for this T-beam, b is the
width of the flange when it is carrying positive moments,

and width of the stem when it is carrying negative moments.
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Design Process Summary
The following steps outline a procedure for proportioning the longitudinal reinforcement in a beam to safely resist
bending moments which result from applied loads.
i.  Obtain the bending moment diagram and determine the moment which must be resisted by the beam, M.
ii.  Using a provided value of d, estimate k and j to be k = 3/8 and j = 7/8. If it is assumed that the maximum
allowable tensile stress in the steel is 0.6fy, then the required area of steel is:
A _ M
smin = 0.6f,jd
jii. Using the rebar table in Appendix G, select the number of bars needed so that the area of longitudinal steel,

As, is greater or equal to Asmin.
iv. Calculate the actual value of k. Recall that n = Es/Ec and p = As/bd.

k=+(mp)?+2np —np

v.  Calculate the actual length of the flexural lever arm, jd:
ja=d(1 ! K)
= 3

Vi, Check to ensure that the steel stress, fs, does not exceed 0.6fy:

M < 0.6,
k= gga= 0k
vii.  Check to ensure that the concrete stress, fc, does not exceed 0.5fc”:

- k M < 05f'
f‘_l—knAde <05/

When checking if a design is safe, only steps i and iv to vii need to be performed.
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force in the concrete, Ce, is equal and opposite to the tension force in the steel, Ts. Together, they form a couple which
has the following properties:

M = Cjd = T,jd (33.13)

In Eqg. (33.11), jd is the vertical distance between the compressive and tensile forces and is called the flexural lever
arm. Because the concrete stresses, are distributed in a triangular pattern over the height kd, the resultant compressive
force is located at a distance of kd/3 from the top of the member. Therefore, jd is equal to:

1 1
jd=d-zkd~j=1-zk (33.14)

Knowing the value of the flexural lever arm is important as it provides the necessary link between the bending moment
carried by the member and the stress in the reinforcement, fs. This relationship can be determined by combining Egs.
(33.6) and (33.13):

) M

M = Asfgjd > fs =ajd (33.15)

If the steel is still linear elastic, the strain in the steel can be obtained by using Hooke’s law and dividing fs by the

Young’s modulus of steel, Es. Substituting the steel strain into Eq. (33.4), results in the following equation for the
curvature of the member:

M

) 319
Substituting Eq. (33.16) in Eq. (33.3) and multiplying the concrete strain by Ec results in a compact equation for the

maximum concrete stress when the member is carrying the bending moment:

k M

A TN (33.15)

Finally, the maximum moment which can be carried by the member if it fails by yielding of the flexural reinforcement
can be determined if we use Eq. (33.13) and let the steel stress fs equal the yield stress fy:

Myieia = Asfyjd (33.16)
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Lecture 34 — Reinforced Concrete Members — Design for Shear

Overview

In this chapter, the behaviour of reinforced concrete members subjected to shear is discussed. The Simplified Method
for shear design in the Canadian concrete design code, CSA A23.3:19, is presented, and its application for both
designing members for shear and evaluating the shear strength of existing structures is explained.

Historical Background

Shear stresses in reinforced concrete members can cause failure due to the resulting diagonal tensile and compressive
stresses. If amember does not contain adequate amounts of shear reinforcement, vertical bars which run perpendicular
to the longitudinal steel, then it may fail suddenly without obvious signs of distress. The mechanism by which
reinforced concrete members carry shear is complex, and there have been significant structural failures in the 20™
century due to inadequate design and construction practices. Some notable shear failures include the collapse of the
Sleipner A offshore platform in 1991, which imploded while under construction, leading to an estimated cost of $700
million (USD), and the collapse of the De la Concorde overpass in 2006, which killed five people and left six others
with serious injuries. Photos of these collapses are shown in Fig. 34.1.

Fig. 34.1 - Collapse of the Sleipner A platform (left) and De la Concorde overpass (right).
The magazine title translates to “From Engineering Cathedral to Concrete Scrap™.

Research work performed at the University of Toronto has led to significant advances in the understanding of how
reinforced concrete carries shear stresses. Experiments performed on concrete specimens using unique equipment like
the Panel Element Tester and Shell Element Tester, shown in Fig. 34.2, have led to the development of the Modified
Compression Field Theory, which serves as the theoretical basis for the Canadian and Australian concrete design
codes, the fib Model Code 2010 and the American bridge design code.
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Fig. 34.2 — Panel Element Tester (left) and Shell Element Tester (right) at the University of Toronto.
Overview of Shear Behaviour

Recall from Lecture 25 that shear stresses in beams cause diagonal compressive and tensile stresses. Because concrete
has a low tensile strength, these tensile stresses cause diagonal cracks to form. After cracking, the reinforced concrete
has two basic mechanisms for carrying shear stresses:

i.  Aggregate Interlock — shear stresses acting along the crack surfaces, which are rough due to the aggregate
embedded in the concrete, along with tensile stresses in the longitudinal steel carry tension across the crack.
ii.  Shear Reinforcement — steel reinforcement which is perpendicular to the longitudinal reinforcement carry
tensile stresses which, along with the tensile stresses in the longitudinal steel, carry tension across the crack.

The first mechanism is the predominant method of carrying shear for members which do not have shear reinforcement
and its strength is strongly influenced by the width of the cracks which form under shear loading. A close-up photo
showing interlocking of the aggregate is shown in Fig. 34.3.

LOSHT i =
Fig. 34.3 — Interlocking of aggregate in a concrete member, preventing sl

g along the crack.
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possible failure mode is if the diagonal compression from the shear causes crushing to take place. The shear stress
which causes this to occur, Vmax, is defined in the Canadian concrete design code as:
Vmax = 0.25£/ (34.5)
Where fc” is the compressive strength of the concrete. Putting these concepts together, the shear strength of a member,
Vi, is equal to strength attributed to the concrete, Ve, plus the strength attributed to the steel, Vs, which must be less
than Vmax. To provide an adequate factor of safety in design, the terms associated with the concrete strength are also
multiplied by 0.5, and the terms associated with the steel strength are multiplied by 0.6, which results in the following
equation:
Vo = 0.5V, + 0.6V, < 0.5V00 (34.6)
Finally, when designing for shear, the value of the shear force at the location of a reaction force or concentrated point
load is typically not used. These regions are “disturbed” by local compressive stresses, since the forces tend to
compress the member in the transverse direction where they are applied. Because shear failures are typically associated
with diagonal tension, the additional compression helps to prevent a failure from occurring in these regions. Instead,
the shear force which is located a distance d away from the reaction force or point load is typically used for analysis
and design, where d is the distance between the longitudinal steel and the compression face of the member as used for
flexural design. Fig. 34.7 illustrates the shear force which should be used in design.

Fig. 34.7 — Design shear force.

Shear Capacity of Members Without Shear Reinforcement

Slabs, which are used commonly used in floors or foundations of a building, are often built without shear
reinforcement. Therefore, their shear strength solely depends on the ability of the concrete to carry stresses across the
cracks via aggregate interlock. The shear strength is strongly related to how thick the member is, because larger
members tend to have wider cracks. Since aggregate interlocking becomes less effective as the cracks get larger, the
shear strength, v, tends to become smaller as the overall depth of the member increases. This is called the size effect
and has been observed in experiments done at the University of Toronto and other institutions. Fig. 34.8 shows the
effect of member depth on predicted shear strength using the Canadian code, as well as the shear strengths of many
experiments.

Note: veand vs correspond to the shear strengths associated
with the concrete and steel respectively in units of MPa. To
determine the corresponding shear force, Ve and Vs
respectively, these quantities should be multiplied by byjd in
accordance with Eq. (34.4)

Note: The maximum shear force causing crushing is equal
to:

Vinax = 0.25f.byjd
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3000 + il
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] + 100
1000 1
o’ 0
o 2000 4000 6000
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Fig. 34.8 — Size effect for reinforced concrete members
subjected to shear. The failure stress of a member without
shear reinforcement decreases as it becomes deeper.
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Shear stress, v
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Tension in
v / longitudinal steel
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Fig. 34.5 — Derivation of shear stresses in a cracked concrete member.

After cracking, the shear stress distribution no longer follows the shape predicted by Jourawski’s equation because
the tensile capacity of the concrete is severely reduced. Consider a slice of a beam with a width Ax shown from
elevation view, like in Fig. 34.5. Recall that the shear force, V, is related to the bending moment M, by:

V= dm 34.1
=i (34.1)
The change in moment leads to an increase in the tensile forces in the longitudinal steel, which is related to the tension
in the steel, Ts, by the flexural lever arm, jd. Therefore, Eq. (34.1) can be rewritten in terms of the change in tension
force in the longitudinal steel, ATs:

M=Tjd-V=

AT,jd
ax (34.2)

The change in tension force in the longitudinal steel is due to the shear stresses which act over the area defined by the
web width, bw, and the length of our slice, Ax. Horizontal equilibrium requires that the shear stresses, v, must be
defined as:

vb,, Ax = AT (34.3)

Substituting Eq. (34.2) in Eq. (34.3) and eliminating Ax from the equation results in the following equation for the
maximum shear stress in a cracked concrete member, which occurs in its web:

v
V= byd

(34.4)

A shear failure in a member occurs when the shear stress exceeds its shear capacity. As previously noted, the shear
capacity is related to the strength offered by the aggregative interlock, vc, and the shear strength offered by the steel
shear reinforcement, vs. In heavily reinforced members which contain large amounts of reinforcement, then another

Web width, bw

ber

Web width
Du = Bieq + Bigy|

right

Fig. 34.6 — Effective web width, bu.

Note: the web width may consider adjacent webs, like in the
case of the double-tee beam shown in Fig. 34.6.
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The equation for the shear strength of members without shear reinforcement is given in Eq. (34.7). This equation is
based on the Modified Compression Field Theory and is used for shear design in Canada.

230,/f7 "

1000 + 0.9/ G47)

Ve = vehyjd =
In Eq. (34.7), Vc is the shear strength in units of force, fc” is the compressive strength of the concrete in MPa, d is the
effective depth in mm, buw is the width of the web and jd is the flexural lever arm.

Shear Capacity of Members Containing Shear Reinforcement

Shear reinforcement are bars which are perpendicular to the direction of the longitudinal reinforcement. They are
commonly inserted into reinforced concrete members by bending bars to form hoops or U-shapes, which are
commonly referred to as stirrups in North America. Some examples of shear reinforcement are shown in Fig. 34.9.
The area of shear reinforcement, A, refers to the total cross-sectional area of the bars which are oriented vertically,
and the primary task of an engineer is to determine their spacing to ensure that the member has adequate shear strength.

. . Ty
Apar |
. . 3 o ke b o o
. .
Av = Ppar A = 2% gy A = 4x Aoy

Fig 34.9 — Types of shear reinforcement and corresponding values of A,.

Providing shear reinforcement has two benefits: the bars themselves provide additional shear strength, Vs, and they
control the width of the diagonal cracks, which improves the aggregate interlocking strength and hence increases Ve
as well. The shear strength provided by the stirrups can be described by visualizing how the stresses in a cracked
reinforced concrete beam are carried, with fields of diagonal compression in the concrete being equilibrated by the
tensile stresses in the shear reinforcement, which have an area of Av and spacing s. This is shown in the left diagram
in Fig. 34.10.

v v
et of Diagonl Digonal
Compressin ol Compression it
Pl el
Cormprassion Gompression
i L
L Fewra L Fewra
. Tencion Terson
+Spacig,s - y JR——
’ Sirups ) Tension Tes

Fig. 34.10 — Diagonal stress fields in a cracked reinforced concrete beam (left) and
Simplified truss model for concrete members subjected to shear (right).

Note: the shear strength (in MPa) attributed to the concrete,

Ve, is equal to:

23077

Ve = 1000+ 0.9d
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The right diagram in Fig. 34.10 shows a simplified representation of the left diagram. Here, the member is treated as
a truss with a height of jd and contains discrete diagonal compression members inclined at an angle of 6 from the
longitudinal axis. Given these geometric constraints, the vertical tension members in this equivalent truss model must
be spaced at jdcot® and have a cross sectional area, A, equal to the following:
A A, Ayjdcotf
=Y, =2 7
jdcotd s s

(34.8)

If yielding of these vertical tension members governs the failure of the member, then the maximum shear force which
can be carried in the equivalent truss, Vs, will occur when the stress in these bars reaches the yield stress, fy:

A, fyjd
Vv, = %cote (34.9)
In the Canadian design code, the angle of the diagonal stresses is assumed to be equal to 6 = 35°, resulting in the
following equation for Vs:

A fjd
v, “ny/cot35° (34.10)

For small amounts of shear reinforcement, Ve is still calculated by using Eq. (34.7). However, if the quantity of shear
reinforcement exceeds a threshold value, then the size effect disappears, and an improved equation can be used. This
minimum reinforcement requirement is:

A
b”’;y > 0.06/f7 (34.11)

If Eq. (34.11) is satisfied, then Vc is instead calculated as:

V. = vb,jd = 0.18\/f!b,jd (34.12)
Although there are many concepts covered in this chapter, applying them to solve problems is relatively
straightforward. There are two primary uses of the equations, which are to (1) evaluate the shear strength of a member

or (2) design the shear reinforcement by selecting the appropriate spacing of stirrups. Each process is described in the
following summary sections.

Note: The shear strength (in MPa) attributed to the steel, vs,
is equal to:

_Afy

vg = bujd ~ Bys cot 35

Note: The equation for vc when at least a minimum amount

of shear reinforcement is present is equal to:

v = 0.18/f/
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Summary - Designing the Shear Reinforcement of a Member

The first two steps of this procedure are the same as the procedure for evaluating the shear strength of a member,
which are finding the shear force diagram and determining the flexural properties k and j. Once these are found, then
the required task involves determining if shear reinforcement is needed, and if so, the calculating the required spacing
s.

i.  Same as step i in the previous procedure.
ii.  Same as step ii in the previous procedure.
iii.  Check if the shear demand, V, exceeds 0.5Vmax. If so, the cross section is too small and needs to be resized.
Otherwise, proceed to step iv.

0.5 X Vpgy = 0.125f/b,,jd
iv.  Check to see if the shear force can be resisted by the Ve alone. If so, the design is complete.

V. =0.5V.=05 23072 byjd
= 0% = 097000 + 0.94
V. If the shear force cannot be carried by V. alone, provide the minimum amount of shear reinforcement and
check if this results in enough capacity to carry the shear demand. Remember that providing the minimum
amount of shear reinforcement permits Eq. (34.12) to be used when calculating V. instead of Eq. (34.7)

Aoty
0.06\/7:b,,

Ayf,jd
V. = 0.5V, + 0.6V; = 0.5 X 0.18,/f/b,,jd + 0.6 X "/Tylcotw

Ay 7
By =006 s =

Vi, If the shear capacity is still too low, then a smaller spacing must be obtained to carry the shear force. This
spacing, s, can be obtained by letting V = Vr and re-arranging the equation, resulting in the following:

0.6 x 4,f,jd cot 35°
s= 2 TlyJanSy
V =05 x 0.18/f/b, jd
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Summary - Evaluating the Shear Strength of a Member
This procedure applies when the failure load of a member is needed. Because we are dealing with structural failure,
the partial safety factors, 0.5 for concrete and 0.6 for steel, are not used.

i.  Solve for the reaction forces and obtain the shear force and bending moment diagrams. Determine the

maximum shear force, V, which is not located within d of a reaction force or applied point load.
ii.  Calculate the relevant parameters used for flexural behaviour, such as n, p, k and j. Recall that:

k =+/(np)? +2np —np
j=1 lk
/=173

iii.  Check if the provided amount of reinforcement meets or exceeds the minimum reinforcement requirement
described in Eq. (34.11). Calculate Vc using the appropriate equation.

230,/f7 ) Afy

1000 + 0.9d wi bw—s < 0.06ﬁ0r no stirrups

A
0.18/f7b,,jd Ay 0.06,/f;
bys

iv. If shear reinforcement is present, calculate Vs:

A,fyjd
Vv, = '{*yjcot&‘?

V. Calculate the shear strength of the member, Vi:
V, = Vo + Vg < Vg = 025f/,,jd
vi.  Failure of the member occurs when the applied shear force is equal to the shear resistance.

V=1
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Lecture 35 — Prestressed Concrete Structures

Overview

In this chapter, the fundamental behaviour of pi concrete is The force-in-the-tendon
method to determine the stresses in a prestressed concrete member subjected to bending moments is presented.

Prestressed Concrete

In many ways, prestressed concrete is similar to reinforced concrete. Steel reinforcement is cast into the concrete and
after the concrete cracks under loads, the steel carries tensile forces to increase the structure’s load-carrying capacity.
Unlike reinforced concrete however, prestressing the reinforcement results in the steel carrying significant tensile
forces before the external loads are applied. Because the steel is embedded into the concrete, these tensile forces in
the steel cause the concrete to be in a state of compression. Prestressed reinforcement is sometimes referred to as
active reinforcement because the steel is actively in a state of tension, which contrasts with passive reinforcement,
which is only engaged once the concrete cracks.

The precompression applied to the concrete by the prestressed reinforcement has a significant impact on its load-
deformation response because significant tensile forces are now needed to overcome the precompression and cause
cracking. Therefore, under the loads which are expected under typical daily situations, the concrete will remain
uncracked and behave in a linear elastic manner. Figure 35.1 illustrates the difference prestressing can make for a
beam carrying a uniform load. For loads which are about half of the predicted failure load, which corresponds to a
typical factor of safety, the reinforced concrete beam deflects significantly more than the equivalent prestressed beam.

N

Reinforced Concrete Beam

Equivalent Prestressed

Applied Load, P

Midspan Displacement, A
Fig. 35.1 — Comparison of load-deformation response of equivalent reinforced and prestressed concrete members.
The stresses in the concrete and steel caused by prestressing are said to be self-equilibrating, meaning that they balance

each other out without the influence of external loads. Therefore, the total stresses in the concrete can be calculated
as the sum of the stresses caused by prestressing and the stresses caused from axial loads, shear forces, and moments.

Note: Prestressed concrete requires using high-strength
steel and high strength concrete. This is so the steel can be
stressed to carry large forces to compress the concrete and
not yield or rupture. The steel must also be able to sustain
these stresses over the lifetime of the structure and minimize
losses due to effects like creep. The concrete must have a
high compressive strength to avoid crushing under the
combined effects of the applied loads and the prestress.

concrete member using a hydraulic jack.

Note: There are two primary means of prestressing concrete.
The first method, called pre-tensioning, involves casting
concrete around strands of steel which are being pulled.
Once the concrete hardens, the steel is cut from the bed and
embedded parts compress the concrete. The second method,
called post-tensioning, involves casting hollow ducts into
the concrete. Once the concrete hardens, steel strands are
inserted into the ducts where they are stressed and anchored.

Note: The prestressed reinforcement in a prestressed
concrete member is sometimes referred to as tendons.
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Calculating Stresses in Prestressed Concrete Members with Concentric Tendons

Consider the prestressed member shown in Fig. 35.3, which has a tendon running along its centroidal axis. The tendon
is stressed to carry a tensile force, P, which compresses the concrete. The member is simply supported over a span L
and carries a uniformly distributed load along its span, w, causing a bending moment of wL%/8 at the midspan.

HLLLLLLLLLULLLLLLLLLULLLLLLLLLULLLLL‘ rXLLLLLLLLLULLLLLLL N
[ \ D
o )

ﬁ% Concentric tendon with force P
b Span.L

Fig. 35.3 — Prestressed member with a concentric tendon. Elevation view (left) and free body diagram at midspan

(right). Note the tension force acting to the right should be aligned with the tendon.

= 2
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=
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Consider the stresses in the member at the midspan, also shown in Fig. 35.3. In addition to the bending moment, there
is also an axial load applied to the section due to the prestressing force. If the concrete is uncracked, and therefore
behaving in a linear elastic manner, the stresses in the concrete, oc, can be calculated by using the basic definition of
stress and Navier’s equation:

P My,

Oeop = =7~ (35.1)
P My,

Tepor = =5+ (35.2)

In Egs (35.1) and (35.2), 6c.0p and oc,op refer to the concrete stresses at the top and bottom of the beam respectively,
A is the cross sectional area, | is the second moment of area, and ywop and ybot are the distances to the top and bottom
of the beam from the centroidal axis. This method is appropriate for finding the stresses if, using these equations, they
are found to be less than the cracking strength of the concrete.

Calculating Stresses in Prestressed Concrete Members with Eccentric Tendons

Arranging the tendons in a prestressed concrete member so that they do not align with the centroidal axis is an effective
strategy when designing for bending. Consider the beam shown in Fig. 35.4 which has a straight tendon that is
eccentric by a distance e from the centroidal axis. In the absence of applied forces, the prestressing force will compress
the member at the location of the steel, causing it to curve upwards. This counteracts the downwards displacements
caused by gravity loads, as shown in Fig. 35.5.

Note: If the stresses exceed the tensile strength of the
concrete, it will crack, and more advanced analysis
procedures are required to analyze the behaviour.
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Fig. 35.4 — Prestressed concrete member with eccentric tendons. Elevation view (left) and free body diagram at
midspan (right).

Eccentric tendon with force P

Span, L

When the tendon is eccentric, the member curves because the axial force in the concrete, which resists the eccentric
tensile force in the steel, must act through the centroid of the cross section. Since the two forces are equal and opposite,
but separated by a distance e, they produce a couple which counteracts the bending moment caused by the loads. The
stresses in the concrete can then be taken as the sum of those caused by the prestressing force, those caused by the
eccentricity of the tendon, and those caused by the applied loads:

P Pe M.
L Yeop _ MYtop

Geaop = =+ e 2 @53)
P Py M
Gepor = =5 73,/"” + —J;"” (35.4)

Egs. (35.3) and (35.4) can be used to calculate the stresses in the concrete at any location along the length of the
member. Note that in regions where the bending moment is low, like near the supports, the stresses caused by the
eccentricity of the tendons may cause the top of the member to crack. Therefore, it is common to have the tendons
follow a curved profile so that the eccentricity varies to match the demand from the applied loads.

Fig. 35.5 — Curving of prestressed member due to eccentric
tendons (top), which opposes the deflections caused by
applied loads (bottom)
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Appendix A — Common Material Properties

Average Properties of Some Typical Materials

Mote that except for density, stiffness and coefficient of thermal expansion, all values have a considerable range

. Stiffness | Tensile Strength | compressive| .. Toughness Ductili
Material E‘:ﬁ}ﬁlﬁ‘l E (MPa) Strength R{ﬁh’}fn“aﬁe am®  Max, gmn;’.' (%) 1050 g,?fg‘ Comment
(MPa) | vield |Ultimate (MPa) tens./comp. | Plastic/Elastic
Low Alloy Steel " 200,000 | 420 260 420 0.44 135 25/0.21 12 | 0.60 Used in buildings, bridges, cars, elc.
High Tensile Steel 77 200,000 | 1650 1860 1650 6.8 55 4/0.83 12 1.50 Wire ropes, cables
High Alloy Steel 7 200,000 | 700 800 700 1.22 200 25/0.35 12 | 2.00 Pressure Vessels and tanks
Piano Wire i 200,000 3000 - 22 22 0.2/1.50 12 1.50 Brittle material, not used in structures
Cast Iron 70 150,000 - 110 770 0.04 0.06/6 1/0.7 11 | 0.50 Traditional cast iron, moulded
Wrought lron 75 185,000 | 200 350 200 0.11 a0 30/0.11 12 11.00 99% pure iron, hammered, fibrous
Aluminum 27 69,000 40 80 &0 0.012 19 40/0.06 24 |1.80 | Light, ductile, non-corrosive, soft metal
Aluminum Alloy 27 73,000 470 580 500 1.51 50 11/0.64 24 | 250 Used for canoes, aircraft, etc.
Copper 88 124,000 70 230 200 0.02 85 55/0.06 20 | T7.47 Very ductile metal — rounded curve
Bronze 79 105,000 | 200 390 350 0.2 40 12/0.19 17 | 2.80 Tin + copper alloy — stronger
Gold 189 82,000 40 220 180 0.01 80 50/0.05 14 | 40k Heavy, expensive metal
Granite 26 52,000 11 140 0.001 0.01/0.26 0/0.02 8 0.15 | Strongest and most durable building stone
Limestone 25 58,000 - 8 62 0.00086 0.01/0.09 0/0.01 6 0.03 Soft, useful building store
Slate 28 85,000 - 60 100 0.019 0.02/0.10 0/0.06 0.08 | Stratified rock with high tensile strength
Brick 19 20,000 - 3 20 0.0002 | 0.01/0.03 0/0.01 9 |0.10 Fired clay
Concrete 24 30,000 - 3 35 0.002 0.01/0.10 0/0.01 9 0.12 Mixture of cement, sand, stone, water
Glass 27 69,000 100 200 0.072 0.07/0.8 0/0.15 20 |1.50 Solidified liquid sand
Oak 7.5 14,000 b a0 [{0] 0.23 0.3/2.5 0.5/0.47 3 3.2 Strong, tough, heavy hardwood
Spruce 4.4 11,000 55 70 50 0.19 0.2/2.2 0.5/0.50 7 2.0 Light, strong, durable softwood
Tendon 10 Q00 70 80 - 27 4 1/7.8 - Used as tension ties in mammals
Bone 20 17,000 150 180 180 0.66 1 0.5/0.9 - Used as struts and beams in mammals
Rubber 8.2 7 20 20 15 20 4/300 500 | 2.0 Strange, useful material — low stiffness
Spider's Silk 10 4,000 1400 - 160 170 10/35 - Most resilient material
Carbon Fibre 15 160,000 - 1800 - 10 10 0.1M1.1 50.0 | Carbon fibre composites used in aircraft
Nylon Fibre 11 5,500 200 - 74 75 216 80 |8.00 Excellent if stiffness not required
Kevlar Fibre 14 130,000 3600 - 50 60 12,7 50.00 Super material in many ways
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Appendix B — HSS Tables

Y
T |
o g
o | STEEL
: v & .
STE v } RECTANGULAR Hollow Structural Sections METRIC Dimensionsand Properties
SQUARE Hollow Structural Sections METRIC Dimensions and Properties
Dead Torsion |Shear
Dead Torsion Sxﬁaoe Shear Designation Size Mass |Load | Area | Iy Sy x Zy ly Sy | iy Zy J Cn
i i i \
Designation Size Mass | Load | Area ! S L Z J oa Crt mm x mm x mm mm x mm x mm kgm | km | mm? |10 mm*103 mmd mm |10® mm3 |10 mmtio} mmd mm (103 mm? 103 mm¢ | mm?
Lo sl o0 K it e Lol um | om? | 108mn | 10%mm® | om | 108w | 10%mnt | mfim | oo HSS 13 HSS 127| 930 [0912|11800(147 | 964 [111 [1190 [ 78.1 | 769 [81.2 | 896 | 167000 | 6450
HSS 305x305x1 HSS 305x305x127| 113 | 1.110 | 14400 | 202 1330 | 118 1560 | 324000 1.18 6450 x 11 x11.1 | 824 |0.808 |10500(132 | 867 [112 [1060 | 70.5 81.9 149000 | 5790
o8 x3x051x13 > ;1‘1,1 100 0.982 12 800 181 1190 119 1390 288 000| 1.18 5790 x9.5 x9.53 71.3 |0.699| 9090(116 113 925 62.1 611 |827 701 430 000 5080
x95 x953 865 | 0848 | 11000 | 158 1040 | 120 1210 | 250000( 1.19 5080 Xx8.0 x795 | 601 |0590| 7660| 99.4 | 652 [114 787 | 533 | 524 (834 | 596 | 111000 | 4340
x8.0 x7.95 728 0.714 9280 135 886 121 1030 211000| 1.19 4340 x6.4 x 6.35 486 (0476 | 6190| 81.5 535 |116 640 438 | 431 |84.1 486 89 800 3550
x64 x6.35 587 | 0576 | 7480 | 110 723 | 12 833 | 171000/ 1.20 3550 HSS254x152x13 HSS254x152x12.7 3.; 0713 | 9260| 752 | 592 | 90.1 | 746 | 336 | 441 |60.2 | 522 78200 | 5160
H 12.7 93.0 .91 11 800 113 888 97.6 1060 183 000| 0.972 5160 x 11 x11.1 X 0.634 | 8230| 68.2 537 | 91.0 671 30.6 | 401 |61.0 470 70 200 4660
HSS 254*2)(5411‘13 SS 254*234"‘| £ Ko 8.303 Tos | 18 799 084 045 | 163000 0978 4660 x g g x9.53 5(;; 0 gg ;agg g.g :gg g; 9 | 589 |27 g 357 [61.7 Ag g % 4110
& X ¥ 1 825 1 0.983 4110 X x7.95 47.! 0. 4 7 503 | 28. 309 |62.4 3! 3530
N el D amm e 2l B s i les (i x6.4 X635 | 384 [0377| 4900| 429 | 338 | 936 | 411 | 195 | 256 [63.1 | 290 | 43000 | 2900
x6.4 x6.35 486 | 0476 | 6190 | 627 484 | 101 571 97900| 0.994 2900 HSS 203x152x13 HSS 203x152x12.7| 62.6 [0.614 | 7970| 43.0 | 123 | 734 | 528 | 27.3 | 358 (585 | 432 | 56400 | 3870
HsS 13 HSS 127| 727 | o3 | 9260 | 547 538 768 650 | 90700| 0769 | 3870 1 x111| 887 (0847 ) 7100| 304 | 388 | 742 476 | 249 | 327|503 | 300 | 50800 | 3530
11 y o | 496 488 776 584 | 81200\ 0775 | 3530 X9, x9. Y i ; 1
Xob e 801 858 | 30 | @9 784 513 | 71000| 0780 | 3150 X80 x7.95 | 411 |0.403| 5240| 302 | 297 | 759 | 360 | 19.3 | 254 |60.7 | 205 | 38200 | 2730
x 80 x7.95 475 0.465 6050 379 373 79.2 438 60500 0.786 2730 x6.4 x6.35 | 334 (0327 | 4250| 25.0 246 | 76.7 295 16.1 211 |615 243 31200 2260
x64 x6.35 384 0.377 4900 313 308 79.9 359 49300| 0.791 2260 x4.8 x4.78 | 255 |0.250 | 3250| 19.5 192 5 228 126 165 |62.2 188 24 100 1760
HSS 178x178x13 WSS 178x178x127| 626 | 0614 | 7970 | 352 3% g4 4 | so20| 068 | 320 HSS 203102813 Hss 203102x127| 524 |0514| 6600 312 :g g_; 40s | 102 | 201 (391 | 246 27000 | 3870
11 11.1 557 | 0547 | 7100 i 1 ) i K 9 |0 1 ; ;
X95 X953 485 | 0476 | 6180 | 286 322 68.0 385 | 46700| 0678 | 2660 x95 x953 | 409 [0401| 5210| 258 703 856| 168 (405 | 199 | 21900 | 3150
x 8.0 x7.95 411 0.403 5240 24.8 279 68.8 330 39900| O. 2320 x8.0 x795 | 348 |0.341| 4 225 221 71.2 281 7.54| 148 (412 172 18 900 2730
x6.4 X6.35 334 | 0327 | 4250 | 206 231 69.6 271 | 32700 0689 | 1940 x6.4 x635 | 283 |0.278| 3610| 188 | 185 | 722 635| 125 (420 | 143 | 15600 | 2
4 255 | 0.250 16.1 181 703 209 | 25200 0695 | 1520 X438 x478 | 217 |0213| 2760| 147 | 145 | 731 | 180 | 503| 99.0[427 | 111 | 12200 | 1760
x48 x4.78 5. 3250
HSS 152x152x13 HSS 152x152x12.7| 524 | 0514 | 6 21.0 275 56.0 341 | 36000| 0566 | 2580
11 X111 | 469 | 0460 | 5970 | 19.3 253 | 568 | 310 | 32500 0571 | 2400 R By chesATedanias ted 0814, Bee0( go4 | 207 ioze f T | %E | 2% k] BN | Sl
X95 x9.53 409 | 0401 | 5210 | 17.3 227 57.6 275 | 28700| 0577 | 2180 i ¢ ¢ i G ;
x9.5 x9.53 | 409 |0401| 5210( 21.7 | 244 | 6456 3 | 128 | 202 (496 | 2 26900 | 2
x8.0 x7.95 348 | 0341 | 4 151 198 584 237 | 246001 0582 | 1920 x80 x795 | 348 [0341| 4430 189 | 213 | 654 | 261 | 112 [ 177 [503 | 207 | 23100 | 2320
x64 x635 | 283 | 0278 | 3610 | 126 166 592 195 300( 0588 | 1610 x6.4 x635 | 283 |0278 | 3610| 158 | 178 | 662 | 216 | 9.40| 148 [51.1 | 171 000 | 1
x48 x4.78 217 | 0213 | 2760 9.93 130 599 152 | 15700 0593 | 1270 x48 x478 | 217 |0213| 2760| 124 | 140 | 67.1 | 167 | 7.41| 117 |518 | 133 | 14700 | 1520
HSS 127x127x11 HSS 127x127x11.1| 380 | 0373 | 4840 | 104 164 46.4 205 | 18000| 0470 | 1840
* %5 X9, 333 | 0327 | 4240 | 947 149 | 472 183 | 16000\ 0475 | 1690 gaiioex0ed Hossacifexl | SulRars ] sl ane | e LS B | el i | 5 | e
x80 x7.95 284 | 0279 | 3620 8.35 132 48.0 159 | 13900 0481 189 X80 x795 | 284 0279 | 3620| 109 | 143 | 548 | 178 | 576| 113 399 | 134 | 12600 | 1920
x64 x6.35 232 | 0228 | 2960 7.05 B 48.8 132 | 11500| o4se | 1 x6.4 x635 | 232 |0228| 2960 9.18| 121 [ 557 | 148 | 4.88| 96.1[406 | 112 [ 10500 | 1610
x48 x4.78 179 | 0475 | 2280 5.60 81| 496 103 8920| 0492 1030 x4.8 x478 | 179 |0175| 2280 7.28| 956|565 | 116 | 389| 766[41.3 | 878 8160 | 1270
HSS 102x102x9. HSS 102x102x9.53| 257 | 0252 | 3280 | 4.44 87.4 368 | 110 7740 | 0374 1210
gt S50 | 57 | 0517 | 280 | ase 78.4 376 | 9%6 6780 | 0.379 1o oS Ea® | HoS eI e2ea®| 557 | 02z | Doa0| Sup | o6d | 4as |1h | 3% | &58 | 204 %75 | €5% | 15%
xes wR e TR % | S3 | W2 |88 ||| e % x62 | 182 | 0478 | 230) 470 | 740 | 451 |0 | 240 | S84 | o0f | k2 | 4o00 | 1280
; ; ; X X x478 | 141 | 0. 1 378 . 9 | 738 | 170 | 447 | 308 | 51 3 1030
HSS89xB9x9.5|  HSS88.9x88.9x053| 219 | 0215 | 2790 | 279 627 316 | 802 | 4970 | 0323 968 HSS 127x64x9.5|  HSS 127x63.5x0.53| 238 | 0.234 | 3030| 528 | 832 | 417 [112 | 1.70 [ 536 | 237 | 674 | 4640 | 1690
x8.0 x795 | 189 | 0.186 2410 | 253 57.0 3 Z;(‘,?, ;;gg gg gg x8.0 x7.95 | 205 | 0.201| 2610| 4.77 | 751 | 427 | 989 | 156 | 491 | 24.4 | 600 | 4130 | 1510
xas ek | Be |00 | 1| E | W5 | 0 | %2 | 200 | oow | e xht x635 | 169 | 016s| 2150| 411 | 648 | 437 | &ag | 136 | 429 | 1 | 510 | 3510 | 12%
: . : - : - : : - x4 x4, 1| o ; Y 6 | 663 | 112 | 352 | 25 ; 1030
HSS 76x76x8.0|  HSS 76.2x76.2x7.95| 158 | 0.155 | 2010 | 1.49 39.0 272 49.7 2630 | 0278 708 HSS 127x51x9.5 |  HSS 127x50.8x9.53| 21.9 | 0.215| 2790| 445 | 700 | 39.9 | 97.7 | 0961 ( 378 | 186 | 489 | 2930 | 1690
. e B lum | im E | ER |8 | o am | @ 30 78 | mo | oee) auolu | me | do | d |amrisn | ma | o | e
: . : - - : . X6 X6 156 | 0. y 5 | 42.1 8 | o0 1.4 X 1
HSS 64x64x6.4|  HSS635x63.5x6.35| 106 | 0104 | 1350 | 0701 | 221 28 | 280 1230 | 0232 484 x48 x478 | 122 | 0119 | 1550| 287 | 453 | 431 | 589 | 0.665| 262 | 207 | 305 | 1850 | 1030
x48 x4.78 B0 || ioome 1 0G0k 0SS }g; 2—? el 1 ggg g»g'ﬁ ggg HSS 102x76x9.5| 'HSS 102x76.2x9.53| 219 | 0.215 | 2790| 3.41 | 67.2 | 35.0 | 876 [ 215 | 563 | 27.7 | 713 | 4710 | 1210
xa2 5% | 5% | 007 | e | 035 | WS | 4 | w5 | 77 | oz | m xe0 x795| 189 | 0186 | 2410| 30 | 610 | 38 | 77 | 1% | 514 | s | 35 | 4170 | 1110
¢ ; : X : ! 4 : X6. X6 6 | 0. ! 8 | 367 | 659 | 171 | 448 | 203 3530 | 968
HSS51x51x6.4|  HSS508x50.8x6.35| 805 | 0079 | 1030 | 0317 | 125 17.6 16.3 580 | 0.181 323 x48 x4.78 | 122 | 0119 | 1550| 2.18 | 430 | 37.5 | 525 | 139 | 366 | 300 | 431 | 2800 | 789
y g.g X g.gt‘a g;g gggg g% g»gzg 1g-g4 :g-“g ﬁg 3?3 8‘}35 g‘;? HSS 102x51x8.0|  HSS 102x50.8x7.95| 158 | 0.155 | 2010| 221 | 435 | 332 | 588 | 0.709| 279 | 188 | 354 | 1950 | 1110
x32 x318 | 455 | 0045 | 560 | 0214 | 842 | 192 | 102 ass | 0192 242 a5 e e ot R BB B o B o [ B B R
x28 x2.79 405 | 0.040 516 | 0.194 764 | 194 9.15 318 | 0.194 221 x38 x381 | 837|0082| 1070| 136 | 268 | 357 | 3319 | 0456 | 180 | 207 | 208 | 1140 | 658
HSS38x38x48|  HSS38.1x38.1x4.78| 454 | 0.044 578 | 0.100 527 | 132 6.91 184 | 013 18 x32 x3.18 | 709|0069| 903| 117 | 231 | 361 | 200 | 0397 | 156 | 210 | 179 | 979 | 565
; } 381 | o 485 | 0.091 477 | 137 6.04 160 | 0.1
X33 3% | 35 | ol 418 | 0.082 431 | 140 534 141 | 0141 161 HSSeee0 HES 38R 05| IR ANIDDD || 200187 42, (108 549 | 400 | Seoiy Sl oe L2 Rl o
x25 x254 | 271 | 0026 345 | 0.071 371 | 143 451 Ve OIS 142 x48 x4.78 | 103 | 0.101| 1310| 1.36 | 306 | 323 | 3810 | 0803 | 253 | 24.8 | 301 | 1690 | 667
HSS32x32x38|  HSS 31.8x31.8x381| 3.06 | 0.030 389 | 0.048 301 [ 114 3g2 aro| o114 12 x38 x381 | 837| 0ge2| 1070 115 | 258 | 328 | 315 | 0679 | 214 22 | 280 | 1400 | 61
: 318 | 265 | 0.026 338 | 0.044 277 | 114 351 776| 0. X3 X3. 09 | 0. X X ; 0 |o. . ; i
FH x2s4 | 220 | ooz 281 | 0.039 244 | 117 3.01 65.1f 0.118 ‘;ge HSS 76x51x8.0| HSS 76.2x50.8x7.95| 126 | 0.123 | 1600| 1.01 | 266 | 25.1 | 359 2| 205 | 180 | 267 | 1270 | 706
25x3; 4x25.4x3.18| 201 | 0.020 257 | 0.020 1.56 879 | 205 36.3| 0.091 X X6.4 x635 | 106 | 0.104 | 1350| 0.917 | 241 | 26.1 | 314 | 0477 | 188 | 188 | 235 | 1110 | 645
| T 169 | 0017 216 | 0018 1.41 9.12 179 31.6| 0093 77.4 x48 x4.78 | 835| 0.082| 1060| 0.774 | 203 | 27.0 | 257 | 0407 [ 160 | 196 | 193 | 911 | 546
K x38 x381 | 685|0067| 872| 0.660| 17.3 | 27.5 { 216 | 0349 | 138 | 200 | 163 | 762 | 465
HSS51x25x32 | HSS508x25.4x3.18| 3.28| 0.032| 418| 0.122| 481| 17.1 | 633| 0.040| 314| 977 384| 106 | 242
x25 x254 | 271| 0026| 345| 0105| 4.15| 17.5 | 535| 0035 275|104 | 327| 898
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Appendix C — Steel Wide Flange Beams and Sawn Timber Section Tables

v
t
Wide Flange Rolled Steel Beams dic] g
Dimensions and Section Properties 1
L\:‘J‘ Sawn Timber Sections
Dimensions and Section Properties
2 5 5 A Torsion | Shear
L3 en Dimensions mg - Strong Axis X-X Weak Axis y-y Consiam
d| b | t]s, 1, S, . 1 S, ¥ J 1,10
mm X kg/m [mm | mm | mm [ mm | kN/m | mm? [ 10° mm*[ 10° mm®| mm | 10° mm*| 10° mm* | mm | 10* mm*| mm -
. Torsion
Size and Nominal Dead Dl Axit x x Constant
W920 x 446933 | 423 | 43 |24.0| 4.38 |57000| 8470 | 18200 | 385| 540 2550 |97.3| 26800 | 822 Desinationl v Load | Ara
x 365|916(419 | 34 [203( 3.57 [46400| 6710 | 14600 [380| 421 | 2010 [953| 14400 | 813 & AR I s, . I s 5 7
x 313|932/ 309| 34 [21.1] 3.06 |39800] 5480 | 11800 [371]| 170 1100 |65.4| 11600 | 806 bxd % = & y y y
x 238|915 305 | 26 [16.5| 2.33 |30400| 4060 | 8880 [365| 123 806 |63.6| 5140 | 796 == — N | mm? [ 10° mm® | 10° mm? | o | 10° wan® | 10° mmm® | e 1108 o
W840 x 329| 862|401 | 32 [19.7] 3.23 [42000| 5350 | 12400 | 357| 349 1740 | 91.2| 11500 | 764
x 210/ 846|293 | 24 [15.4| 2.06 |26800] 3110 | 7340 [341]| 103 700 [62.0( 4050 | 738 292 x 495 12x20| 0.907 | 145000 [ 2950 | 11900 | 143 1030 | 7030 |[84.3| 2570
x 176/ 835/292| 19 [14.0| 1.72 |22400] 2460 | 5900 [331| 782 536 [s59.1| 2220 | 722 X 445 x 18/ 0.816 | 130000 [ 2140 | 9640 [129( 923 6320 |84.3| 2190
x 394 x 16/ 0722 | 115000 | 1490 | 7550 |114| 817 5600 |84.3| 1760
W760 x 257| 773|381 | 27 |16.6| 2.52 |32800| 3420 | 8840 |323| 250 1310 |87.3| 6380 | 689 x 343 x 14/ 0.629 | 100000 [ 982 5730 |99.0| 712 4870 |84.3| 1370
x 173|762 267| 22 [14.4| 1.70 |22100] 2060 | 5400 [305| 68.7 515 |55.8| 2690 | 663 x 292 x 12| 0535 | 85300 | 606 4150 |84.3| 606 4150 |84.3| 1030
x 147|753 265| 17 [13.2| 1.44 |18700| 1660 | 4410 [298| 52.9 399 |532| 1560 | 651
241x 495  10x20| 0.749 | 119000 [ 2440 | 9840 |143| 577 4790 |69.9| 1600
W690 x 217| 695|355 | 25 [15.4| 2.13 [27700| 2340 | 6740 |291| 185 1040 |81.7| 4560 | 618 x 445 x 18 0.673 (107000 | 1770 | 7950 |[129| 519 4310 |69.6| 1360
x 152|688 254| 21 [13.1] 1.49 |19400| 1510 | 4380 [279| 57.8 455 |54.6| 2200 | 604 x 394 x 16| 0596 | 95000 [ 1230 | 6240 |114[ 460 3810 |69.6| 1130
x 125/678|253| 16 |11.7| 1.23 [16000| 1190 3500 [273| 441 349 [52.5| 1180 | 594 x 343 x 14 0519 | 82700 | 810 4730 [99.0( 400 3320 |69.6| 900
x 292) x 12| 0.442 | 70400 | 500 3420 |84.3| 341 2830 |69.6| 671
W610 x 195/ 622|327 | 24 [15.4] 1.91 {24900/ 1680 | 5400 |260| 142 871 |755| 3970 | 554 x 241 x 10/ 0365 | 58100 | 281 2330 |69.6] 281 2330 |69.6| 476
% 155|611|324| 19 [12.7| 1.51 |19700] 1290 | 4220 [256| 108 666 [74.0( 1950 | 545
x 125/612(229| 20 |11.9] 1.22 [15900| 985 3220 [249( 393 343 [49.7| 1540 | 537 191 x 495 8x20| 0594 | 94600 [ 1930 7800 |143| 287 3010 [55.1| 868
% 101{603| 228 | 15 [10.5| 0.99 [13000| 764 2530 (242 29.5 259 |47.6| 781 527 X 445 x 18 0534 | 85000 | 1400 | 6300 [129| 258 2710 |55.1| 751
x 394 x 16| 0472 | 75300 | 974 4940 |[114] 229 2400 |55.1| 636
W530 x 182| 551|315| 24 [15.2| 1.78 [23100[ 1240 | 4480 |232| 127 808 |74.1| 3740 | 492 x 343 x 14| 0411 | 65500 | 642 3750 |99.0] 199 2090 |55.1| 515
x 150|543 | 312 20 |12.7| 1.47 [19200| 1010 3710 [229( 103 659 (732 2160 | 487 x 292 x 12| 0350 | 55800 | 396 2710 (843 170 1780 |55.1| 403
x 109|539 211| 19 [11.6] 1.06 [13900| 667 2480 (219 29.5 280 [46.1| 1260 | 471 x 241 x 10| 0289 | 46000 | 223 1850 [69.6] 140 1470 |55.1| 285
x 82/528|209| 13 [ 9.5 0.81 |10500] 479 1810 |214| 203 194 |440| 530 | 463 x 191 x 8 0229 | 36500 | 111 1160 |55.1| 111 1160 |55.1| 188
W460 x 144| 472|283 | 22 [13.6| 1.41 |18400| 726 3080 |199| 836 591 |67.4| 2440 | 421 140 x 445 6x 18] 0391 | 62300 ( 1030 | 4620 [129( 102 1450 |404| 325
x 97/466|193| 19 |11.4[ 0.95 [12300{ 445 1910 [ 190 228 237 (431 1130 | 408 x 394 x 16/ 0346 | 55200 | 714 3620 (114 90.1 1290 |404| 279
x 82|460| 191| 16 | 9.9 | 0.80 [10400| 370 1610 [189| 186 195 [423[ 691 404 x 343 x 14| 0301 | 48000 | 471 2750 [99.0| 784 1120 |404| 232
x 61]450| 189 11 | 8.1 | 0.60 | 7760 | 259 1150 |183| 122 129 |39.7| 289 395 x 292 x 12| 0257 | 40900 | 290 1990 |84.3| 6638 954 |404| 186
' x 241 x 10| 0212 | 33700 | 163 1360 |69.6[ 55.1 787 |404| 139
W410 x 114[420{ 261 | 19 |11.6] 1.12 [14600| 462 2200 | 178| 572 439 |62.6| 1490 | 376 x 191 x 8 0.168 | 26700 | 813 851 |[s5.1| 437 624 |40.4| 949
x74|413]|180| 16 [ 9.7 0.73 | 9550 | 275 1330 | 170| 156 173 |404| 637 364 x 140) x6| 0.123 | 19600 [ 32.0 457 |404| 320 457 |404| 542
x 60/407|178| 13 [ 7.7 | 0.58 | 7580 | 216 1060 |169| 12.0 135 |39.8| 328 363
%39|399|140| 9 |64 038 | 4990 | 127 634 |160| 4.0 577 |285) 111 348 89 x 387 4x 16| 0216 | 34400 | 430 2220 |112| 227 s11 |25 7115
x 337 x 14| 0.188 | 30000 | 284 1680 |97.3| 19.8 445 (257 659
W360 x 314] 399|401 [ 40 |24.9] 3.07 {39900 1100 | 5530 |166| 426 2120 | 103 | 18500 | 345 x 286 x12[ 0.160 | 25500 [ 174 1210 |826| 168 378 |257| 538
x 122|363/ 257| 22 [13.0] 1.19 [15500] 365 2010 | 153| 615 478 |63.0| 2100 | 322 x 235 x10[ 0.131 | 20900 [ 963 819 |[67.8] 138 310 |25.7| 419
x 791354205 | 17 [ 9.4| 0.78 {10100 227 1280 | 150 242 236 |489| 814 317 x 184 x 8| 0.103 | 16400 | 462 502 |s53.1]| 108 243|257 301
x 64)347]|203| 14 [ 7.7 0.63 | 8140 | 178 1030 | 148| 18.8 186 |48.1| 438 k3P x 140 x6| 0078 | 12500 [ 204 291 |404| 822 185 |[25.7| 19.8
x 45(352|171( 10 [ 69| 0.44 | 5730 | 122 691 |146| 8.8 957 |37.8( 160 | 313 x 114 x5| 0064 | 10200 [ 11.0 193 |329| 670 151 |[257] 138
x33|349]|127| 8 [58] 032 |4170| 827 474 | 141 291 458 |264| 859 | 305 x 89| x4 0050 [ 7920 | 523 18 257 523 117 |[25.7| 885
W310 x 253|356/ 319 | 40 |24.4] 2.48 [32200] 682 3830 |146| 215 1350 |81.7| 14800 | 304 64 x 337 3x 14| 0135 | 21600 | 204 1210 [97.3] 736 230 |185| 25.8
x 118/314/307| 19 [11.9) 1.15 |15000] 275 1750 [ 135 902 588 [77.5| 1600 | 282 x 286| x 12| 0.115 | 18300 | 125 872 [82.6] 625 195 |185| 21.4
x79(306]| 254 15 | 8.8 | 0.77 |10100] 177 1160 | 132 399 314|629 657 277 x 235 x 10| 0.094 | 15000 | 69.2 589 |67.8| 5.3 160 |185| 17.0
% 60/303|203| 13 [ 7.5 0.59 | 7590 | 129 849 [130]| 183 180 |49.1] 397 274 x 184 x 8 0074 | 11800 [ 332 361|531 4.02 126 |185| 125
% 39|310|165| 10 | 5.8 | 0.38 | 4940 | 85.1 549 [131]| 727 88.1 |384| 126 | 279 x 140) x 6 0056 | 8960 146 209 [404| 3.06 956 |185| 8.68
x21/303|101| 6 |51 021269 37.0 244 [ 117| 0983 195 [19.1] 294 258 x 114 x5| 0.046 | 7300 7.90 139 [329] 249 778 |185| 6.41
x 89 x4 0036 | 5700 | 3.76 845 257 1.94 60.8 |185| 4.29
W250 x 115{269| 259 | 22 |13.5] 1.12 {14600 189 1410 [ 114] 64.1 495 |663| 2130 | 236
x 49/247|202| 11 | 7.4| 0.48 | 6250 | 70.6 572 | 106| 15.1 150 |49.2| 241 223 38 x 337 2x14[ 0071 | 12800 | 121 719 [97.3| 154 811 |11.0| 572
x 33|258|146| 9 | 6.1 032 | 4170 | 489 379 [108] 4.73 64.7 |337| 985 | 231 x 286} x 12| 0.060 | 10900 | 74.1 518 |82.6] 131 688 |[11.0| 479
2 x 235 x 10| 0.049 | 8930 | 411 350 |67.8] 1.07 56.6 |11.0| 3.87
W200 x 59(210(205 | 14 | 9.1 | 0.58 | 7560 | 61.1 582 [89.9| 204 199 |51.9] 465 187 x 184 x 8| 0038 | 699 19.7 214 |53.1]| 084 443 [11.0[ 291
% 36/201|165| 10 | 6.2 | 0.35 | 4580 | 34.4 342 |86.7| 7.64 926 |[40.8| 146 181 x 140) x6 0.029 | 5320 | 8.69 124 |404| 0.64 337 |11.0| 211
x27(207[133| 8 | 58] 0263390 258 249 [87.2| 330 496 |312 713 185 x 114 x5 0024 | 4330 | 4.69 823 [329| 052 274 |11.0( 165
x 89 x4 0019 | 3380 | 223 502 [257| o041 214 |110[ 1.19
W150 x 30[157[153| 9 | 66| 029 [ 3790 | 17.2 219 |67.4]| 5.56 726 |383| 101 141 x 64 x3[ 0013 [ 2430 | 083 259 |[18.5| 029 154 |11.0[ 073
x 14/150| 100| 6 |43 0.13 | 1730| 6.87 915 |63.0| 092 184 |230| 170 | 133 x 38 x2| 0008 [ 1440 | 0.7 9.15 |11.0| 017 9.15 [11.0| 029
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Appendix D — Wood Properties

Section 9 Wood €l ¢ . Pegg 259
( (Snmms 57 Fercentile egtimates of streggtl
wnder oue mouth loadiug . Fop safe
wo "L‘T“ﬂ stregses reducd these braaly %
s tiressat b q foctor of Seu{Q'(\i of I.5
9-11.2(a) Specified strength and modulus of elasticity for dimension lumber, thickness 38 to 77 mm, MPa**
Species or Grade Bending Shear Compression Tension Modulus of
Species fou Longitudinal Parallelto Perpendicular Parallel to Elasticity
Combination fu Grain fo,  to Grain fg,  Grain fy, Esp Eps
Douglas Fir- Select 175 1 16.5 3.6 13.5 11,000 8,000
Larch Structural
No. 1 and 10.0 1 9.0 3.6 9.0 9,500 6,000
No. 2
Hem-Fir Select 16.0 0.8 14.5 1.9 135 11,000 7,500
Structural
No. 1 and 1.5 0.8 10.5 1.9 9.0 10,500 7,000
No. 2
Lodgepole Pine,  Select 16.0 1.0 14.5 1.9 13.5 10,000 7,000
or Ponderosa Pine Structural
No. 1 and 11.5 1.0 10.5 1.9 9.0 9,000 6,000
No2
Jack Pine Select 16.0 1.0 145 2.6 13.5 10,500 7,000
Structural
No. 1 and 115 1.0 10.5 2.6 9.0 9,500 6,000
No. 2
Red Pine Select 11.5 0.8 10.0 1.9 10.0 7,000 5,000
Structural
No. 1 and 8.0 0.8 7.0 1.9 7.0 6,000 4,000
No. 2
White Pine* Select 6.0 0.8 - 1.9 - 5,500 4,000
Structural
No. 1 and 4.5 0.8 =~ 1.9 = 4,500 3,500
No. 2
* For use in stress-laminated decks only.
** Dir lumber with of 89 mm or greater shall have gths in with
Table 13-11.2 (b). .
9-11.2(b) Specified strength and modulus of elasticity for beams & stringers, post & timbers,
minimum dimension 140 mm, MPa
Species or Grade Bending Shear Compression Tension Modulus of
Species fou Longitudinal Parallelto Perpendicular Parallel to Elasticity
Combination fuy Grain fpy  to Grain fqu  Grain fy, Es Eps
Douglas Fir- Select 24.0 1 16.5 3.6 13.0 11,000 7,500
Larch Structural
No. 1 20.0 11 9.0 3.6 9.0 9,500 6,500
Hem-Fir Select 20.0 0.8 145 1.9 13.0 11,000 7,500
Structural
No. 1 18.0 0.8 10.5 1.9 9.0 10,500 7,000
Lodgepole Pine,  Select 18.5 1.0 14.5 1.9 13.0 10,000 7,000
or Ponderosa Pine Structural
No. 1 13.0 1.0 10.5 1.9 9.0 9,000 6,000
Jack Pine Select 18.5 1.0 145 2.6 13.0 10,500 7,000
Structural
No. 1 13.0 1.0 10.5 2.6 9.0 9,500 6,000
Red Pine Select 13.0 0.8 10.0 1.9 10.0 7,000 5,000
Structural
No. 1 9.0 0.8 7.0 1.9 7.0 6,000 4,000

Table 4.3 Average clear-wood strength values* for commercial species in air-dry condition

Property
Shrinkage, Compressi Comp ‘
green to air-dry parallel perpendicular )

based on dimensions Modulus Modulus to grain, to grain, Te_nslon

Relative densityt when green (%) of of crushing Shear fiber stress at perpendlcul:ar

rupture elasticity strength  strength  proportional to grain

Species Nominal Oven-dry Radial Tangential Volumetric (MPa) (MPa)  max. (MPa) (MPa) limit (MPa) (MPa)
SOFTWOODS

Cedar

Eastern white 0.30 0.31 = = 3.8 4.3 4380 248 6.93 2.68 2.62

Western red 0.34 0.34 - - 4.8 53.8 8270 33.9 5.58 3.43 1.4

Yellow 0.43 0.46 - - 5.0 797 11000 45.9 9.21 4.74 3.49
Douglas-fir 0.49 0.51 - - 7.0 88.6 13500 50.1 9.53 6.01 3.06
Fir

Amabilis

Pacific
(silver) 0.39 0.41 - - 7.5 68.9 11400 40.8 7.54 3.61 :AOG

Balsam 0.35 0.37 12 4.3 57 58.3 9650 343 6.25 3.14 .08
Hemlock

Eastern 0.43 0.45 24 4.7 6.2 67.1 9720 41.0 8.75 4.28 Z.gg

Western 0.43 0.47 - - 8.1 81.1 12300 46.7 6.48 4.53 Z
Tamarack 0.51 0.54 - - 71 76.0 9380 4.8 9.00 6.15 3.47
Larch, western 0.58 0.64 - = 8.0 107.0 14300 60.9 9.25 7.31 3.62
Pine

Eastern white 0.37 0.38 - - 4.5 65.0 9380 36.2 6.10 3.39 g?

Jack 0.44 0.45 21 3.8 5.7 77.9 10200 40.5 8.23 5.70 .65

Lodgepole 0.41 0.46 - - 6.6 76.0 10900 43.2 8.54 3.65 3.78

Ponderosa 0.46 0.49 - - 6.1 73.3 9510 42.3 7.03 522 3::

Red 0.40 0.42 19 4.1 6.5 69.7 9450 37.9 7.50 4.96 :“

Western white 0.37 0.40 - - 6.0 64.1 10100 36.1 6.34 3.23 5
Spruce

PBlaCk 0.43 0.44 1z 4.0 6.5 78.3 10400 415 8.65 4.25 3:;

Engelmann 0.40 0.42 - - 6.8 69.5 10700 424 7.55 3.70 2

Red 0.40 0.42 - - 6.2 71.5 11000 38.5 9.20 3.77 3.70

Sitka 0.39 0.39 - - 6.0 69.8 11200 37.8 6.78 4.10 248

White 0.37 0.39 14 4.0 6.8 62.7 9930 36.9 6.79 3.45 3.28
HARDWOODS
Aspen,

::mbling 0.41 - 27 5.7 8.3 67.6 11200 36.3 6.76 3.52 4.19
Birch, yellow 0.61 - - - 9.9 106.0 14100 52.1 14.67 7.24 7.52
Maple, sugar 0.66 - 29 6.4 9.3 115.0 14100 56.4 16.71 9.72 9.21
Oak, red 0.61 - - - 6.9 98.7 11900 49.8 14.38 8.89 6.52

5o | Cavq = 50.2Mp
I I 4+ T I I \
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Modulus of rupture, in pounds per square inch

(b) Frequency distribution of bending strength of green Douglas fir. 21y6 swmall clear
specimens cut from a sinale tyge. Shert-term 4 oading.
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Appendix E — Common Unit Conversions

Working with SI units

Lengths, Strains and Curvatures

Pressures and Stresses

Forces and Moments

1 m=1,000 mm
1 m? = 10% mm?
1mé=10°mm?

1 mm/m = 10° mm/mm
1 rad/m = 10°% mrad/mm

1Pa=1N/m?
1 kPa = 1 KN/m?
1 MPa = 1 MN/m?
1 MPa =1 N/mm?

1kN=1,000 N
1MN=10°N

1 Nm =1,000 Nmm
1 kNm = 108 Nmm

Working with other unit systems and other miscellaneous quantities

1 foot = 12 inches
1 cubit = 18 inches
1 yard = 3 feet
1 chain = 22 yards
1 furlong = 10 chains
1 mile = 8 furlongs

1 mile = 1,760 yards

1 acre = 10 square chains
1 square mile = 640 acres

1 ha = 10,000 square m

linch =25.4 mm
1 foot = 304.8 mm
1 mile = 1609 m
1 ha = 2.47 acres

1kg=2.20Ibs

1 stone = 14.0 Ibs

1 lbs/ ft® = 16.02 kg/ m®
100 Ibs/ft® = 15.72 KN/m?

1 N =0.225 Ibs (force)
1 kip=4.45kN

9.81 m/s? = 32.2 feet/s?
1 kNm = 0.738 kip ft
1 kNm =8.85 kip in

1 hp =746 Watt

1 km/h =0.278 m/s
1 km/h = 0.621 miles/h
1 knot = 1.852 km/h
1 MPa = 145.0 psi
1 kN/m? = 20.9 lbs/ft?
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Appendix F — Areas and Centroids of Common Shapes
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Appendix G — Common Canadian Reinforcing Bar Information

Linear Density

Nominal Diameter

Cross-Sectional Area

Designation (kg/m) (mm) (mm?)
10M 0.785 11.3 100
15M 1.570 16.0 200
20M 2.355 19.6 300
25M 3.925 25.2 500
30M 5.495 29.9 700
35M 7.850 35.7 1000
45M 11.775 43.7 1500
55M 19.625 56.4 2500
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