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Living demonstration explaining the principles which allow the Firth of Forth railroad 

bridge to carry load. Designed by Benjamin Baker and John Fowler.  
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Test of a 4 m deep reinforced concrete slab strip at the University of Toronto in 2015. 
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Lecture 1 – The Three Principles of Engineering 
The Three Principles of Engineering 

“The four to twelve page Toike Oike we remember – with its notices of School events, reports of meetings, accounts 

of the exploits of School teams, messages from the Dean and occasional jokes – would scarcely seem to have the 

potential to convulse the University of Toronto. True the bound volume in the Engineering Society Office did have one 

issue with a short joke encircled in blue pencil. We understood that this had got the editor suspended – possibly even 

expelled. It is also true that in our fourth year Engineering Physics wrested control from the former editors, apparently 

meeting with little organized resistance, and produced Volume XXX (or possibly XXXI – there seems to have been 

some confusion). Luckily no one attempted to use this experiment as a launching pad for a career in journalism or 

politics. But one of the editors who remains active has just fearlessly restated the three fundamental Principles of 

Engineering presented in that 1939 manifesto:  

 

1. F = M × A 

2. You can’t push on a rope. 

3. A necessary condition for solving any given Engineering problem is to know the answer before starting 

 

Structural engineering is a branch of civil engineering which is interested in the analysis and design of structures 

which must safely carry forces. Some examples of civil structures designed by structural engineers, which are typically 

built out of steel, concrete, or timber, include buildings, bridges, tunnels, dams, and concrete offshore platforms. The 

principles used in structural engineering are also applicable to disciplines outside of civil engineering, such as 

aerospace engineering and biomedical engineering.  

 

Before getting into the nuts and bolts of structural engineering, it is worth spending some time pondering the meaning 

of the Three Principles of Engineering in greater detail. As their name suggests, these principles apply, generally 

speaking, to all disciplines of engineering. They are particularly relevant to structural engineers however, as the 

collapse of significant structures – including those in Canada – have greatly influenced how engineering is practiced 

today. In fact, the Iron Ring ceremony, a ritual undergone by all engineers trained in Canada to affirm the duties and 

responsibilities of the profession, has its roots in the collapse of the Quebec Bridge in 1907.  

 

The First Principle of Engineering, F = M × A, is Newton’s second law of motion. It has practical applications in 

many branches of physics and engineering. For example, mechanical and aerospace engineers use it to design objects 

intended to move, such as transportation vehicles, spacecraft, or even robotic drones. Structural engineers on the other 

hand, typically make use of the special case of Newton’s second law, which is when A, the acceleration of a body, is 

equal to 0. When this condition is satisfied, a system is said to be in a state of equilibrium. The concept of equilibrium 

is fundamental to structural engineering, which is primarily interested in systems which do not accelerate except under 

exceptional circumstances, like during a severe earthquake.   

 

Symbolically, the First Principle of Engineering represents the idea that engineers use mathematical models to 

understand and shape the world around them. Many branches of engineering do not use Newton’s laws of motion but 

instead use their own discipline-specific set of tools which are also grounded in physics and math. Practicing engineers 

must master the application of these tools in their work, while engineers who work in research seek to develop new 

models and expand the body of knowledge of their respective field of engineering.    

  

 
Fig.1.1 – Engineering Manifesto. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIV102H1F CIV102 Course Notes September 2021 

        

 

4 

 

The Second Principle of Engineering, “You can’t push on a rope”, is very different from the First Principle. From a 

structural engineering perspective, a rope collapses when pushed because it is too flexible to carry a compressive 

(pushing) force. The technical reason why this occurs is because the rope buckles. Buckling, which is discussed in 

greater detail later in the course, does not exclusively affect ropes, but can happen to any slender member is being 

subjected to a large compression force.  

 

Buckling of slender compression members was the cause of failure of the Quebec Bridge, which collapsed during 

construction in 1907, killing 75 workers. The bridge, which was designed by the American engineer Theodore Cooper, 

had a similar shape as the Firth of Forth Railway Bridge which was at the time the longest cantilever truss bridge in 

the world. Baker and Fowler’s bridge, shown in Fig. 1.2, used very large members to safely carry the large compression 

forces in the structure. Cooper, who ridiculed the Firth of Forth Railway Bridge for using excessive amounts of steel, 

instead used comparatively slender members in his design, which is shown in Fig. 1.3. These members, which buckled 

during construction, caused the failure shown in Fig. 1.4.  

 

 
Fig. 1.2 – Baker and Fowler’s Firth of Forth Railway Bridge. The two main spans are each 1700 feet long. 

 Opened 1890. 

 

  
Fig. 1.3 – Cooper’s Quebec Bridge during 

construction. 
Fig. 1.4 – Cooper’s Quebec Bridge after collapse. 
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Although the First Principle of Engineering celebrates the use of mathematical models in engineering, the Second 

Principle is a reminder to draw upon common sense and experience when working with the real world. The results of 

calculations – which can be simple calculations done by hand or complex simulations performed on a supercomputer 

– must be checked to ensure that they make sense. We know from our experience living in the real world that gravity 

pulls objects down, materials tend to expand when heated, light travels faster than sound, slender members buckle 

when pushed with great force, and so on. Calculations which suggest otherwise should generally not be trusted.  

 

The Third Principle of Engineering is perhaps best summarized as “To find the answer, you must know the answer”.  

Although seemingly paradoxical, engineering is full of situations where this statement is true. For example, structural 

engineers often encounter the following dilemma: a bridge must be designed to carry loads which includes its own 

self-weight. However, its weight is not known until after the bridge has been designed, which in itself requires knowing 

its weight at the beginning of the design process. Without experience, resolving this paradox can be challenging and 

may even result in designs which are dangerously unsafe. Navigating through most engineering problems therefore 

requires a reasonable idea of what the final design will be before starting, i.e., the answer must be known before it is 

obtained.  

 

The Third Principle of Engineering illustrates the value of experience when practicing engineering. It is also a 

reminder of the dangers of approaching new problems where one does not have any prior experience to act as a guide. 

The collapse of the Quebec Bridge, which was by far the longest bridge ever designed by Cooper, can partially be 

attributed to him straying from the Third Principle and attempting to find the answer without knowing what it should 

have been in the first place. 
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Lecture 2 – Basic Concepts: Newton, Pulling on Ropes, Units 
Overview 

In this chapter, a variety of basic concepts are introduced which permit simple structural systems to be understood 

from a mechanics-based perspective. Beginning from Newton’s laws of motion, the idea of forces – such as the force 

due to gravity, and tension and compression forces transmitted through structural members – is discussed. By 

introducing the concept of a moment, a turning action which causes bodies to rotate, the three equations of equilibrium 

for two-dimensional systems are presented. The chapter concludes with a brief discussion about units.  

 

Newton’s Laws of Motion 

Newton’s three laws of motion are: 

1. “Every body continues in its state of rest, or of uniform motion in a right line, unless it is compelled to change 

that state by forces impressed upon it”. This can be mathematically expressed as: 

 

∑𝐹 = 0 → 𝑎 = 0 (2.1) 

 

2. “The change of motion is proportional to the motive force impressed; and is made in the direction of the right 

line in which that force is impressed” 

 

𝐹 = 𝑚𝑎 (2.2) 
 

3. “To every action there is always opposed an equal reaction: or, the mutual actions of two bodies upon each 

other are always equal, and directed to contrary parts.” 

 

In Eq. (2.1) and (2.2), F is a force applied to the body, m is its mass (which is assumed to be constant), and a is the 

translational acceleration of the body. The first law of motion is especially relevant to the field of structural 

engineering, where the bodies considered are typically not accelerating despite being subjected to numerous forces.  

 

Basic Definitions – Forces 

The acceleration due to gravity caused by the pull of the Earth on a body is defined as g. Using Newton’s second law, 

the gravitational force Fg which pulls an object with mass m towards the centre of the earth, is defined as: 

 
𝐹𝑔 = 𝑚𝑔 (2.3) 

 

g varies around the world depending on the elevation of the ground, assuming a larger value closer to sea level and a 

smaller one at high elevations. A typical value of g which is accurate to three significant figures is g = 9.81 m/s2. This 

value is reasonably accurate over a wide range of elevations and will be used for all calculations in this course.   

 

The main purpose of a structural member is to transmit forces from one location to another, like the rod shown in Fig. 

2.2 which is being pulled with a force of 100 N on either side. The behaviour of the rod can be understood using 

Newton’s first and third laws. Because the forces are equal in magnitude but pointing in opposite directions, the rod 

does not accelerate and is in a state of translational equilibrium. Furthermore, if the forces were caused by two people 

 

 
Fig. 2.1 – Newton’s three laws of motion. 
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pulling on the rod, they would feel the rod resist their applied force with an equal and opposite reaction force in order 

to maintain this state of equilibrium. A free body diagram drawn through any point along the rod would show that the 

internal force at every location is a pulling, or tensile, force of 100 N. 

 

 
Fig. 2.2 – A body carrying 100 N of tension. 

 

A member like the one shown in Fig. 2.2 which is carrying a pulling force acting through its axis is said to be in 

tension. The opposite of tension is compression, which is defined as a pushing force acting through the axis of a 

member like the one shown in Fig. 2.3. A free body diagram drawn through any point along the rod’s length will 

reveal that the internal force at every location is a pushing, or compression, force of 100 N. 

 

 
 Fig. 2.3 – A body carrying 100 N of compression. 

 

Components of Forces in Two Dimensions 

When dealing with two-dimensional systems in the x-y plane, forces will generally produce an effect in both the 

horizontal (typically taken as x) and vertical (typically taken as y) directions. The actions of a force along these 

directions are called its x- and y- components respectively. A force F which is acting at an angle θ relative to the x 

axis, like the one drawn in Fig. 2.4, has components in the x- and y- direction, Fx and Fy respectively, defined as: 

 

𝐹𝑥 = 𝐹 cos 𝜃 (2.4)   
 

𝐹𝑦 = 𝐹 sin 𝜃 (2.5) 
 

 
Fig. 2.4 – Components of a force. 

 

The magnitude of the force is related to its components by Pythagoras’ theorem: 

 

𝐹 = √(𝐹𝑥)
2 + (𝐹𝑦)

2
 (2.6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: It often more convenient to define the x and y 

components of a force F using the side lengths of a similar 

triangle whose hypotenuse is parallel to F, instead of 

defining an angle θ. For example, for the force vector shown 

below in Fig. 2.5, defining sinθ = (b/c) and cosθ = (a/c) 

allows us to define the components as: 

 

𝐹𝑥 = 𝐹 cos 𝜃 =
𝑎

𝑐
𝐹 

 

𝐹𝑦 = 𝐹 sin 𝜃 =
𝑏

𝑐
𝐹 

 

 
Fig. 2.5 – Determining the components of a force using a 

similar triangle. 
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Rotational Actions – Moments 

In addition to causing translational motion, forces can also cause bodies to rotate. A moment is the turning effect 

produced by a force about a reference point when the line of action of the force does not pass through the defined 

point of reference. The moment Mi caused by a force about reference point i is defined as the product of the magnitude 

of the force F and the perpendicular distance between its line of action and the reference point, di: 

 

𝑀𝑖 = 𝐹 × 𝑑𝑖  (2.7) 
 

Because a moment is defined based on a reference point, the moment produced by a force will be different when 

calculated about different reference points. For example, the 5 N force in Fig. 2.6 produces a counterclockwise 

moment of 5 N × 4 m = 20 Nm about point A and a clockwise moment of 5 N × 6 m = 30 Nm about point B. 

 

 
Fig. 2.6 – A 5 N force producing moments about points A and B. 

 

A couple is special class of moments which occurs when two forces with the same magnitude F act in the opposite 

direction of each other while being separated by a perpendicular distance d. This produces a pure turning effect about 

every reference point in the x-y plane: 
𝑀 = 𝐹 × 𝑑 (2.8) 

 

A schematic of a couple is shown in Fig. 2.8. 

 

 
 

Fig. 2.8 – Definition of a couple. 

 

 

Note: Like moments, a torque is also a form of rotational 

force. A torque is a special case of a moment which acts 

through the axis of a prismatic object.  

 

 
Fig. 2.7 – A moment acting about the axis of a prism, often 

referred to as a torque.  

 

 

 

 

 

 

 

 

 

 

 

 

Note: Like forces, moments are considered as vectors, not 

scalars. Therefore, they are defined by both a magnitude, 

which may be in units of Nm, and a direction, which may be 

clockwise or counterclockwise. 
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Equations of Equilibrium 

For two-dimensional systems, Newton’s first law must be extended to include both translational and rotational 

equilibrium. Translational equilibrium requires the sum of all forces to equal zero in both the x- and y- directions so 

that there is no net translational acceleration:  

 

∑𝐹𝑥 = 0 (2.9) 

 

∑𝐹𝑦 = 0 (2.10) 

 

Rotational equilibrium in the x-y plane also requires that the sum of all moments be equal to zero so that there is no 

rotational acceleration: 

 

∑𝑀 = 0 (2.11) 

 

Equations (2.9) to (2.11) are collectively referred to as the equations of equilibrium. For a system which is in 

equilibrium, these equations are always satisfied regardless of the choice of coordinate system and reference point 

used to evaluate them.  

 

Equilibrium of Forces which Meet at a Point 

A special case of equilibrium is a system of forces which meet at a point, like the five forces shown in Fig. 2.9. 

Because each force passes through a common point, rotational equilibrium is guaranteed because the moment 

produced by each force about the point of intersection is equal to zero. Hence, only the two translational equations of 

equilibrium, Eq. (2.9) and (2.10), need to be satisfied for the system to be in equilibrium.  

 

Frictionless Pulleys 

Pulleys used together with cables are one of the simplest systems used in structural engineering. Consider the circular 

pulley with radius r shown in Fig. 2.10 which supports a rope being pulled with a force T1 on the left and T2 on the 

right. When the system is in equilibrium, the pulley will not rotate and hence the sum of moments must equal to zero. 

If it is assumed that there is no friction in the system, the moments produced by T1 and T2 about the centre of the 

pulley, M1 and M2 respectively, can be calculated as:  

 

𝑀1 = 𝑇1 × 𝑟, acting counterclockwise 

 

𝑀2 = 𝑇2 × 𝑟, acting clockwise 

 

Taking the sum of all moments and setting them to equal to zero yields the following result: 

 

∑𝑀𝑜 = 𝑀1 +𝑀2 = 𝑇1 × 𝑟 − 𝑇2 × 𝑟 = 0 → 𝑇1 = 𝑇2 (2.12) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Equilibrium of a series of forces which meet at a point 

can be visualized by graphically rearranging the force 

vectors so that the tail of one vector connects with the tip of 

another. If a closed path can be formed by re-arranging the 

forces in this manner, the system is in equilibrium. 

 

 
Fig. 2.9 – Five forces which meet at a point. They are in 

equilibrium because the force vectors can be rearranged to 

form a closed path. Note their lengths are proportionate to 

their magnitude.  
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Thus, the tension carried by a wire remains constant as it goes around a frictionless pulley. The pulley only serves to 

redirect the tension force carried by the wire.  

 

 
Fig. 2.10 – Free body diagram of an ideal pulley. 

 

Dimensions and Units 

In engineering, calculations are done using physical quantities which have units. In order to carry out these calculations 

correctly, it is necessary to become comfortable working with units and converting between them as needed. 

 

It is important to distinguish between dimensions and units. Dimensions refer to the measurable physical quantities 

which describe a property – for example, the dimension of velocity is distance/time. Units are the means to describe 

dimensions according to some sort of standard reference. Using our example from before, common units used to 

measure velocity are metres per second (m/s) or kilometres per hour (km/h).  

 

When performing calculations with physical properties, note the following rules:  

 

1. Two quantities which are added together or subtracted from one other must have the same units 

2. Quantities which are multiplied together or divided from each other will have their units multiplied or divided 

accordingly. For example, a velocity in m/s multiplied by a time in s will result in a distance in units of m.  

 

In engineering, having a sense of what each unit means is necessary to interpret the correctness of a calculation and 

avoid unrealistic answers. Measurements of length and area are the most intuitive because of our experience working 

with objects and space in the real world. Units for weight and pressure are generally more difficult to visualize, but 

can still be interpreted using the following simple examples:  

 

• 1 N is approximately the weight of a small apple 

• 1 kN is approximately the weight of a football player 

• 1 MPa is approximately the pressure applied to a notebook carrying the weight of an African bush elephant 

 

Table 2.1 contains a list of common conversions which will occur in the course, and is reproduced in Appendix E.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: In CIV102, calculations will primarily be done using 

units of N or kN for forces, mm or mm2 for geometric 

properties, MPa for stresses and kNm for bending moments. 

Calculations can be consistently done by working exclusively 

with units of mm, N and MPa.  
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Table 2.1 – Sample Unit Conversions 

Working with SI units 

Lengths, Strains and Curvatures Pressures and Stresses Forces and Moments 

1 m = 1,000 mm 

1 m2 = 106 mm2 

1 m3 = 109 mm3 

 

1 mm/m = 103 mm/mm 

1 rad/m = 106 mrad/mm 

1 Pa = 1 N/m2 

1 kPa = 1 kN/m2 

1 MPa = 1 MN/m2 

1 MPa = 1 N/mm2 

1 kN = 1,000 N 

1 MN = 106 N 

 

1 Nm = 1,000 Nmm 

1 kNm = 106 Nmm 

 

Working with other unit systems and other miscellaneous quantities 

1 foot = 12 inches 

1 cubit = 18 inches 

1 yard = 3 feet 

1 chain = 22 yards 

1 furlong = 10 chains 

1 mile = 8 furlongs 

1 mile = 1,760 yards 

 

1 acre = 10 square chains 

1 square mile = 640 acres 

1 ha = 10,000 square m 

 

1 inch = 25.4 mm 

1 foot = 304.8 mm 

1 mile = 1609 m 

1 ha = 2.47 acres 

 

1 kg = 2.20 lbs 

1 stone = 14.0 lbs 

 

1 lbs/ ft3 = 16.02 kg/ m3 

100 lbs/ft3 = 15.72 kN/m3 

 

1 N = 0.225 lbs (force) 

1 kip = 4.45 kN 

9.81 m/s2 = 32.2 feet/s2 

1 kNm = 0.738 kip ft 

1 kNm = 8.85 kip in 

 

1 hp = 746 Watt 

 

1 km/h = 0.278 m/s 

1 km/h = 0.621 miles/h 

1 knot = 1.852 km/h 

1 MPa = 145.0 psi 

1 kN/m2 = 20.9 lbs/ft2 
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Lecture 3 – Building Bridges 
Overview 

In this chapter, the history of bridges is briefly discussed before the topic of suspension bridges is examined in more 

detail. The mechanics of how cable structures carry load is explained by using the concepts covered in Lecture 2.  

 

Building Bridges 

Bridges are structures which cross over obstacles such as rivers, roads, or cliffs and hence connect two locations which 

would otherwise be separated. The earliest bridges were used to cross over rivers and were built by simply felling a 

large tree and positioning the trunk over the water to span the distance between the two banks. More elaborate bridges 

were used by the Romans, who crossed over larger rivers by driving wood pieces into the riverbed and using them to 

support the longer deck, like the bridge shown in Fig. 3.1. Some examples of modern types of bridges are truss bridges, 

which consist of steel or timber pieces arranged in a lattice-like configuration, suspension bridges, which use steel 

cables to support a deck over long distances, and arch bridges built from stone or reinforced concrete. Many bridge 

systems will be introduced and discussed in further detail throughout the course, beginning with suspension bridges 

in this lecture.   

 

Suspension Bridges 

Suspension bridges, like the bridge designed by Thomas Telford shown in Fig. 3.2, use long cables carrying tension 

forces to support the bridge deck over significant distances. Improvements in construction methods and the increasing 

quality of steel cables has meant that many of the longest bridges in the world today are suspension bridges. Despite 

these advancements, the underlying mechanics of how these structures work remains grounded in the basic principles 

covered in the previous chapter.  

 

 
Fig. 3.2 – Thomas Telford’s Wrought-Iron Suspension Bridge across the Menai Straits, in Wales. 

The bridge, opened in 1826, has a 177 m span. 

 

Cable Forces in Suspension Bridges 

For cable structures which carry hanging loads, the shape of the cables depends on how the loads are distributed. A 

cable which is not carrying any load besides its own self-weight is shown in Fig. 3.3. The shape that the cable assumes 

in this situation is called a catenary. Accounting for this special shape can be important when designing cable 

 

 
Fig. 3.1 – Caesar’s Bridge over the Rhine. 
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structures whose loading is dominated by the self-weight of the cables. A common example of such structures are 

power lines used to transmit electricity over long distances.  

 
Fig. 3.3 – A hanging cable forming the shape of a catenary under its own weight. 

 

When a load which is significant compared to the self-weight of the cable is hung at the midspan, the cable will change 

shape to form two straight lines. Having three weights will result in four straight lines, five weights will result in six 

straight lines, and so on. This progression is shown in Fig. 3.4, which shows how the shape of a hanging cable changes 

as the number of weights hung from it increase from one, to three, to five. Although the shape of the cable remains 

piecewise linear, the straight segments begin to approximate a smooth curve as the number of weights is increased. If 

the weights remain constant in value and the spacing between them approaches zero, the load is said to be uniformly 

distributed along the length of the structure. When this happens, the slope of the cable will vary linearly along the 

span and hence assume the shape of a parabola.  

 
Fig. 3.4 – Change in cable shape as weights are added. 

 

The tension in the cable at any location along the span can be determined by drawing a free body diagram. This is 

done by drawing the free body diagram so that its boundary cuts through the structure at the location of interest. 

Because the original structure was in equilibrium, the resulting substructures are also in equilibrium, and hence the 

three equations of equilibrium must be satisfied for each free body diagram. This is illustrated in Fig. 3.5, which 

investigates the tension in the cable between the first and second loads from the left by separating the structure at this 

location. Since the left and right substructures must both be in equilibrium, either free body diagram may be used to 

solve for the unknown tension in the wire, which has a vertical component of 3/2P. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Although the shape of a cable under its own weight (a 

catenary) and a cable supporting a uniformly distributed 

load (a parabola) appear similar, the shapes are subtly 

different because of the differences in the loading. For a 

freely hanging cable, the load per unit length of the cable is 

constant, whereas for a cable supporting a uniform load, the 

load per unit length of the span is constant. Because the 

cable follows a curved profile, the self-weight of the cable is 

not constant along the length of the span, which results in the 

shape of the catenary.   

 

 

 

 

 

 

 

 

 

 

Note: When drawing a free body diagram by cutting through 

a member, the internal forces which were carried by the 

member at the cut must be drawn onto the resulting free body 

diagram. This is because the internal forces are necessary 

for satisfying equilibrium of the structure at that point.  
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Fig. 3.5 – Analysis of tensile forces in a cable structure. 

 

If a series of free body diagrams are drawn, like in Fig. 3.6, the variation in the tension force in the cable can be 

determined. Due to symmetry, only three free body diagrams need to be drawn to solve for the forces in the six straight 

segments of the structure, which are the forces at locations A, B and C.  

 
 

Fig. 3.6 – Calculating the variation of tension force in the cable using free body diagrams. 

 

Determining the vertical component of the tension is a straightforward task if the vertical force carried by the two 

supports on the ends is known. They can be found by applying the three equations of equilibrium to a free body 

diagram of the whole structure, which results in reaction force of 5/2P on each side in this example. Once these support 

forces are known, equilibrium in the vertical direction requires that the vertical component of tension in the cable vary 

from a maximum of 5/2 P at the support, to a minimum of 1/2P at the midspan. If the spacing of the weights was 

reduced to approach zero, i.e., the load be uniformly distributed, the vertical component of force would reduce linearly 

from a maximum at the support to 0 at the midspan.  

 

The horizontal component of force in the cable can be obtained using the other two equations of equilibrium. It should 

be noted however that in each of the free body diagrams shown in Fig. 3.6, the horizontal component of tension at the 

location of interest equals horizontal force supplied by the support. This allows us to conclude that the horizontal 

component of tension remains constant along the structure.   

 

For a cable carrying tension, its inclination is a function of the relative size of its horizontal and vertical components. 

Under uniform loading, the vertical component of force in the cable varies linearly along its length while its horizontal 

component remains constant. Therefore, the slope of the cable will also vary linearly along its span, which results in 

the cable taking the shape of a parabola.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Recall Fig. 2.4 which is reproduced below as Fig. 3.7.  

The slope of the force, and hence the cable, is equal to Fy 

divided by Fx. 

 

 
Fig. 3.7 – Components of a force. 
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Lecture 4 – Design of a Suspension Bridge 
Overview 

In this chapter, the equations of equilibrium are used to derive the cable forces in a uniformly loaded suspension 

bridge. The use of the resulting design equations is then illustrated using the Golden Gate Bridge as a real-life example  

 

Analysis of Suspension Bridges 

Consider the suspension bridge shown in elevation view in Fig. 4.1 which has a span L and a drape h. The main cables 

support the loads carried by the deck, which is attached to the main cables using secondary hanger cables. The bridge 

supports a uniformly distributed load w which has units of force per unit length (i.e., kN/m). By examining a free body 

diagram of the whole structure, the vertical reaction forces provided by the towers at the ends of the bridge can be 

found by considering vertical and rotational equilibrium about the centre of the bridge: 

 

∑𝐹𝑦 = 0 → 𝑅𝐿,𝑦 + 𝑅𝑅𝑦 − 𝑤𝐿 = 0 (4.1) 

 

∑𝑀midspan = 0 → −𝑅𝐿,𝑦 × (
𝐿

2
) + 𝑅𝑅,𝑦 × (

𝐿

2
) = 0 (4.2) 

 

 
Fig. 4.1 – Elevation (side) view of a suspension bridge. 

 

Equations (4.1) and (4.2) form a system of two equations and two unknowns, which are the reaction forces RL,y and 

RR,y. Solving for the two unknowns leads to the conclusion that each support resists half of the total load carried by 

the bridge: 

 

𝑅𝐿,𝑦 = 𝑅𝑅,𝑦 =
𝑤𝐿

2
 (4.3) 

 

Using this information, the equations of equilibrium can now be used to learn more about the forces in the cables 

between the supporting towers. Consider the free body diagram of half of the bridge, taken from the left support to 

the midspan, which is shown in Fig. 4.2.  

  

Span: the horizontal distance between the two supports of a 

bridge. 

 

Drape: The vertical distance between the highest and lowest 

points of the supporting cable.  

 

Reaction Force: The force provided by a support in order to 

keep the structure in equilibrium.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The result shown in Eq. (4.3) was rigorously proven 

using the equations of equilibrium. The same result could 

have been obtained by considering symmetry of the system.  
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Fig. 4.2 – Analysis of forces in a cable. Note that Tmidspan has no y-component because the cables are horizontal at 

midspan. 

 

Applying the three equations of equilibrium to the free body diagram yields the following results: 

 

∑𝐹𝑥 = 0 → −𝑇support, x + 𝑇midspan = 0 (4.4) 

 

∑𝐹𝑦 = 0 → 𝑇support, y − 𝑤 ×
𝐿

2
= 0 (4.5) 

 

∑𝑀support = 0 → 𝑇midspan × ℎ − (𝑤 ×
𝐿

2
) ×

𝐿

4
= 0 (4.6) 

 

From Eq. (4.4), we can conclude that the horizontal component of tension, H, is constant in the cables.  Furthermore, 

in Eq. (4.5), the vertical component of tension, V, is highest at the support and reduces to zero at the midspan. These 

observations are consistent with the results discussed in the previous chapter. Therefore: 

 

𝑇y, max = 𝑇support, y =
𝑤𝐿

2
 (4.7) 

 

Finally, re-arranging for H in Eq. (4.6) yields the following important result: 

 

𝐻 =
𝑤𝐿2

8ℎ
 (4.8) 

 

The maximum tension in the cables can be determined by calculating the net force from the vertical and horizontal 

components: 

𝑇𝑚𝑎𝑥 = √(𝑇x, max)
2
+ (𝑇y, max)

2
= √(

𝑤𝐿2

8ℎ
)

2

+ (
𝑤𝐿

2
)
2

 (4.9) 

Note: A distributed force w acting over a length L can be 

replaced by an equivalent point load which has the same 

magnitude and acts through the centroid of the distributed 

load. Some common examples are shown below: 

 

 
 

 

 

 

 

 

 

Note: In Eq. 4.6, the moments are calculated about the top-

left corner of the free body diagram (i.e. at the support). The 

results of the derivation would not be affected if the moments 

were instead calculated about any other location. 

 

 

 

 

 

 

 

 

 

Note: The tension in the cables is lowest at the midspan of 

the bridge because Ty = 0 there. At this location, the tension 

in the cable is simply equal to H. Furthermore, the forces 

discussed in this chapter are the sum of the tensile forces 

carried by each main cable. Because there are usually two 

main cables in a suspension bridge, these forces should be 

divided by two when designing each individual cable. 
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Fig. 4.3 – Design Calculations for the Golden Gate Bridge. 
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Lecture 5 – Stress, Strain, Hooke’s Law and Young’s Modulus 
Overview 

In this chapter, the basics of material behaviour are introduced. Hooke’s law for linear elastic springs is discussed for 

simple structures subjected to tension or compression forces. After introducing the concepts of stress and strain, the 

Young’s Modulus is introduced for relating the two for linear elastic materials. The spring constant for a member is 

demonstrated to be a product of its material stiffness and geometry.  

 

Hooke’s Law 

In Robert Hooke’s 1678 paper “Explaining the Power of Springing Bodies” he states, “The particles therefore that 

compose all bodies I do suppose to owe the greatest part of their sensible or potential extension to a vibrative motion.” 

He suggested that the particles might vibrate back and forth one million times a second and protect their natural 

space.  

 

After studying the behaviour of materials and springs, Hooke presented his findings as an anagram, “ceiiinossstuv”, 

which, when decoded, spells out “ut tensio, sic vis”. This is a Latin phrase which translates to “as the extension, so 

the force”. Mathematically, Hooke’s law explains that the restoring force in a spring, F, is proportionate to its change 

in length, Δl, by a constant k: 

 

𝐹 = 𝑘Δ𝑙 (5.1) 
 

In Eq. (5.1), the spring stiffness k has units of force per unit length, such as N/mm, and F acts in the opposite direction 

as Δl. A structure which obeys Hooke’s law is said to be linear elastic. 

 

Hooke’s Law for Linear Elastic Materials – Stress, Strain and Young’s Modulus 

The spring constant of a member is affected by its shape and material composition. For example, a thin wire is easier 

to stretch than a thick wire made from the same material, and a rope made from a stiff material like steel is more 

difficult to stretch than a similarly shaped rope made from a softer material like plant fibre. To understand how the 

geometry of a member and its material properties contribute individually to the overall stiffness, we will introduce the 

concepts of stress and strain.  

 

Stress is a physical quantity which describes the internal forces acting on a material. For a force F which is carried by 

a prismatic member with an undeformed cross-sectional area A, like the situation shown in Fig. 5.1, the engineering 

stress σ is defined as: 

𝜎 =
𝐹

𝐴
 (5.2) 

 

 
Fig. 5.1 – Terminology used to define stress. 

  

 

 

 

 

 

 

 

 

 

 

 

Note: Although Hooke’s law refers to the behaviour of 

springs, it is applicable to any structure which is subjected 

to direct tension or compression, such as a cable or a 

column.  

 

 

 

Note: Because F and Δl are defined as the force and change 

in length in the direction of a prismatic member’s axis, k is 

sometimes referred to as the axial stiffness of a member. 

 

 

 

 

 

 

 

Note: Although the definitions of stress and pressure appear 

to be similar, pressures refer to forces which are externally 

applied to a body (i.e. pressure applied to a surface), 

whereas stresses refer to internal forces which are carried 

by a structure (i.e. stress in a cable) or a material (i.e. stress 

in steel).  
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Stress has dimensions of force per unit area and is typically described in units of MPa (MN/m2 or N/mm2). Because 

of this, stress can be thought of as the normalized force per unit area experienced by a material.  

 

Strain is a physical quantity which describes how much a material is being deformed. For a prismatic member with 

original length Lo which has elongated by a length Δl, like the situation shown in Fig. 5.2, the engineering strain ε is 

defined as: 

𝜀 =
Δ𝑙

𝐿𝑜
 (5.3) 

 

 
Fig. 5.2 – Terminology used to define strain. 

 

Although strain is dimensionless, it is typically described in units of mm/mm, mm/m or even %. Because of this, strain 

can be thought of as the normalized change in length experienced by a material.  

 

The benefits of using stress and strain to describe the forces and deformations in a material, instead of simply using 

the force and displacement of a structure, is because it allows the behaviour of structures to be compared even if they 

are different sizes. For example, a thin wire will intuitively break at a lower load than a thicker wire, but failure will 

occur at the same stress if they are both made from the same material. 

 

Just like how Hooke’s law states that the force and stretch of a spring are related by a constant, the stress felt by a 

linear elastic material is proportionately related to its strain by a constant E:  

 

𝜎 = 𝐸𝜀 (5.4) 
 

E is called the Young’s Modulus, named after the English scientist Thomas Young. It has the same dimensions as 

stress and is commonly written in units of MPa. Fig. 5.3 shows the stress-strain relationship for several materials 

which have different values of E.  

 

Note that the strains used in Eq. (5.4) are strains which are associated with a material deforming as it tries to carry 

stress. Materials may deform for other reasons, and in some circumstances, it may be necessary to distinguish between 

the strains associated with stress, and the strains caused by other effects. Some examples of strains which do not cause 

stress and should not be used in Eq. (5.4) are thermal strains caused by temperature effects, or shrinkage strains caused 

by water loss. Some of these effects are described in later chapters.  

 

 

 

 

 

 

 

 

Note: The engineering stress and engineering strain are 

defined using the undeformed geometry of the member. In 

reality, a member’s cross-sectional area and length will 

change when it is carrying load. The true stress and true 

strain are the corresponding definitions of stress and strain 

when the deformed geometry is used instead. Although the 

true stress and true strain are more realistic indicators of a 

material’s physical state, they cannot be easily measured, so 

the engineering definitions are used instead.  

 

 

 

 

 

 

 

 

 

 

 

 

Note: Eq. (5.4), which relates the stress and strain in the 

material, is sometimes referred to an example of a 

constitutive relationship. Because E is a characteristic 

property of material which relates stress and strain, it is 

sometimes referred to as the material stiffness. 

 

 

 

. 
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Fig 5.3 – Typical values of E for various materials. 

 

Expressing k in Terms of Geometry and Material Stiffness 

Hooke’s law for linear elastic springs, Eq. (5.1), and its equivalent for linear elastic materials, Eq. (5.4), resemble each 

other because they both relate a force-based quantity (F or σ) and a displacement-based quantity (Δl or ε) by a stiffness-

based quantity (k or E). Fig. 5.4 shows how these quantities are related to each other for linear elastic structures 

subjected to axial load: 

 
Fig. 5.4 – Relationships between structures and materials. 
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If the geometric properties A and Lo, and material stiffness E, are known, then k for a member can be calculated by 

combining equations (5.2) to (5.4) and isolating for F and Δl. This results in the following relationship:  

 

𝐹 =
𝐴𝐸

𝐿𝑜
Δ𝑙 → 𝑘 =

𝐴𝐸

𝐿𝑜
 (5.5) 

 

Therefore, the axial stiffness of a member k is proportionate to its cross-sectional area A and material stiffness E, and 

inversely proportionate to its length Lo.  

Note: k will have units of N/mm if A is in mm2, E is in MPa 

and Lo is in mm.  
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Lecture 6 – Stress-Strain Response, Resilience, Toughness & Ductility 
Overview 

In this chapter, key material properties which are used in the design of structures are discussed. The complete stress-

strain relationship for mild steel, a common material used in many steel and reinforced concrete structures, is 

presented. 

 

Generalized Stress-Strain Behaviour 

As materials are loaded to failure, they generally do not exhibit linear elastic behaviour for their entire life. Gradual 

accumulation of damage to the microstructure of the material and other material-specific internal effects cause the 

stress-strain curve to be nonlinear in general. Even materials which look and feel similar may have very different 

stress-strain properties. For example, Fig. 6.1 shows the stress-strain behaviour of three different types of steel whose 

stress-strain behaviour differs greatly due to the amount of carbon present. 

 
Fig. 6.1 – Stress-strain behaviour of different types of steel. 

 

To describe key features of a material’s stress-strain curve, engineers have defined material properties which serve 

as useful tools for evaluating and comparing different materials. Common aspects which are described by material 

properties include a material’s weight, strength, stiffness, ductility and energy absorption capabilities. Fig 6.2, which 

shows the stress-strain curve of mild steel, illustrates many of the various material properties which are described 

below:  

 

The strength of a material describes how much stress it can carry before failure occurs. Multiple definitions of strength 

exist to recognize the various stages of failure which a material experiences as it is loaded. The yield strength is 

defined as the stress which causes yielding to occur. The ultimate strength is defined as the largest stress which the 

material can carry before failure. Note that the strength of many materials in tension is different from their strength in 

compression.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yielding: the state when a material, usually metals, begins 

to accumulate permanent deformations. When yielding 

begins, the strain will continue to increase even if the stress 

is held constant. The portion of the stress-strain curve which 

exhibits this behaviour is sometimes referred to as the yield 

plateau.   
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Fig. 6.2 – Stress-strain curve of mild steel in tension 

 

The concept of ductility has several definitions, but generally refers to much a material can be deformed before it 

breaks. On a stress-strain curve, this refers to the largest strain a material can carry before fracturing. Materials which 

can sustain significant amounts of permanent deformation before failing are generally referred to as being ductile, 

while those which cannot are referred to as being brittle.  

 

The slope of the linear elastic region of the stress-strain curve of a material is the Young’s Modulus, E. Materials 

which have a large Young’s Modulus are generally referred to being stiff, while those with a small Young’s Modulus 

are called flexible.  Many materials such as steel tend to follow the slope of the linear elastic region when they are 

unloaded or reloaded, even after permanent deformations have occurred.  

 

The complete stress-strain behaviour of mild steel (sometimes referred to as low-allow steel) can be roughly described 

as having three phases. For small strains, steel behaves in a linear elastic manner, and hence the stress and strain are 

related by the Young’s Modulus. Once the stress reaches the yield stress, the material exhibits plastic behaviour along 

its yield plateau. For even larger strains, the stress-strain relationship is nonlinear, with some strengthening due to 

strain hardening, followed by softening as necking begins.  

 

Strain Energy: 

Strain energy is the energy stored in a structure or material as it is deformed. The strain energy W is defined as the 

area underneath the force-displacement curve of a structure, which is mathematically represented as: 

 

𝑊 = ∫𝐹𝑑Δl (6.1) 

Strain Hardening: the phenomenon where a material gains 

strength and stiffness when strained beyond its yield point. 

 

Necking: the phenomenon where localization of tensile 

strains in a material causes the cross-sectional area to 

become noticeably smaller at one location causing it to 

resemble the shape of a neck. Usually precedes failure.  

 

Note: Deformations accumulated when a material is no 

longer behaving in a linear elastic manner tend to be 

permanent for many materials. These non-recoverable 

deformations are sometimes referred to as plastic 

deformations to contrast with the recoverable elastic 

deformations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Eq. (6.1) is the integral of the force carried by the 

structure over the change in length it has experienced.  

 

 

 

CIV102H1F CIV102 Course Notes September 2021 

        

 

24 

 

When a structure is loaded while it is behaving in a linear elastic manner, the area underneath the force-displacement 

curve will be a triangle. Thus, the strain energy for a material with axial stiffness k which has been elongated by Δl 

from its original length is calculated as: 

𝑊 =
1

2
𝐹Δl =

1

2
𝑘(Δ𝑙)2 (6.2) 

 

The area underneath the stress-strain curve of a material also represents an energy-based quantity, which is the strain 

energy density U: 

𝑈 = ∫𝜎𝑑𝜀  (6.3) 

 

U can be thought of as the energy stored in the material per unit volume and is typically expressed using units of 

MJ/m3.  The strain energy density, U, is related to the strain energy, W, by the following equation: 

 

𝑊 = 𝑈 ⋅ 𝑉𝑜  (6.4) 
 

Where Vo is the original volume of the member before it has been deformed. When a material is behaving in a linear 

elastic manner, the area underneath the stress-strain curve is a triangle, which results in an alternative equation for the 

strain energy W if Eq. (6.3) and (6.4) are combined: 

 

𝑊 = ∫𝜎𝑑𝜀 ⋅ 𝑉𝑜 =
1

2
𝜎𝜀𝑉𝑜 (6.5) 

 

Having defined the strain energy, we can now define the resilience and toughness of a material. The maximum amount 

of energy which a structure or material can absorb before it exhibits permanent deformations is defined as its 

resilience. The resilience of a material is calculated as the area under the stress-strain curve in the linear-elastic region. 

The toughness of a structure or material is a measure of how much energy it can absorb before breaking. The toughness 

of a material is hence defined as the area underneath the complete stress-strain curve.  

 

Thermal Expansion 

Materials tend to expand when heated and contract when cooled; the rate at which this occurs is a unique property of 

every material. The thermal strains experienced by a material, εth, are related to the change in temperature ΔT by the 

coefficient of thermal expansion α according to the following equation: 

 

𝜀𝑡ℎ = 𝛼Δ𝑇 (6.6) 
 

For example, if a 1200 mm long rod made of low alloy steel, which has α = 12×10-6 /°C, was heated by 30°C, then it 

would experience a thermal strain of (12×10-6) × (30) = + 0.00036 mm/mm. This corresponds to an elongation of 

0.432 mm. Thermal strains can be significant for large structures – for example, large suspension bridges can change 

length by a few metres under large variations in temperature.  

 

A table of useful material properties for many materials is found below, and is also reproduced in Appendix A.  

 

 

 

 

 

 

 

 

 

 

 

Note: The strain energy density has units of MJ/m3 if the 

stress and strain are in units of MPa and mm/mm 

respectively. This is because 1 MPa = 1MN/m2 = 1MNm/m3 

= 1 MJ/m3. 

 

Note: For a prismatic member, the undeformed volume Vo 

can be expressed as the product of the undeformed length Lo 

and the cross-sectional area A. Eq. (6.5) can then be 

rewritten as: 

 

𝑊 =
1

2
𝜎𝜀𝐴𝐿𝑜 

 

W will have units of J if σ is in MPa, ε is in mm/mm, A is in 

mm2 and Lo is in m.  

 

 

 

 

Note: If a member is free to expand or contract, then thermal 

strains do not lead to stresses developing in the material. 

However, if there is some sort of restraint which prevents it 

from changing sizes, then stresses will begin to develop, and 

the material may fail. One example of where this can happen 

is if a glass container with water inside is placed in a freezer. 

Under the cooler temperature, the container shrinks around 

the water, which is instead expanding as it freezes. Because 

the ice is preventing the glass from contracting, stresses 

begin to accumulate in the glass, and it may shatter.   
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Table 6.1 – Common Material Properties 
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Lecture 7 – “Explaining the Power of Springing Bodies” 
Overview 

Structures may vibrate when subjected to loads which move, or when disturbed from their equilibrium position. In 

this chapter, the basic behaviour of spring-mass systems under free vibration is introduced. 

 

Free Vibration of Spring-Mass Systems 

So far, we have primarily considered systems which are in a state of equilibrium and hence do not accelerate. However, 

structures will generally accelerate when subjected to time-varying loads or when disturbed from their equilibrium 

position. Consider the simplest case which was investigated by Hooke (shown in Fig. 7.1), which is a spring carrying 

a mass. Fig. 7.2, which illustrates his experiment in more detail, shows a linear elastic spring with a stiffness k attached 

to a mass m. The mass is considered to be significantly larger than the mass of the spring, which can be considered as 

weightless. For simplicity, the system will be analyzed without considering gravity, which will be re-introduced later 

in the chapter.  

 

Suppose the mass m is pulled downwards from its resting position and then released. The mass will then vibrate up 

and down before eventually returning to its resting position. This is called free vibration and would theoretically 

continue forever were it not for factors such as air resistance and internal friction which eventually bring the vibration 

to a stop. The vertical position of the mass relative to its original location can be mathematically described using the 

time-varying function x(t), and its vertical acceleration as it vibrates can be defined using another time-varying 

function a(t). Note that the displacement x(t) is measured from the undeformed length of the spring and x(t) and a(t) 

are positive in the downwards direction. 

 
Fig. 7.2 – Analysis of a vibrating spring-mass system. 

 

 
Fig. 7.1 – Excerpt from Robert Hooke’s 1678 paper 

“Explaining the Power of Springing Bodies”. 
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Free body diagram A in Fig. 7.2 shows the forces applied to the mass if its acceleration and displacement are both 

acting downwards (positive). The forces which resist this motion are the inertial force, Fi(t) and the spring force Fs(t). 

As these are the only forces acting on the body, the two forces sum to zero, which produces the following equation: 

 

𝐹𝑖(𝑡) + 𝐹𝑠(𝑡) = 0 → 𝑚𝑎(𝑡) + 𝑘𝑥(𝑡) = 0 (7.1) 
 

The acceleration a(t) is defined as the second derivative of the displacement x(t) with respect to time. This allows Eq. 

(7.1) to be written as just a function of x(t) and its derivatives:  

 

𝑚
𝑑2𝑥(𝑡)

𝑑𝑡2
+ 𝑘𝑥(𝑡) = 0 (7.2) 

 

Eq. (7.2) can be solved by assuming an answer for x(t), and then verifying that our assumed function satisfies the 

differential equation. Consider the following function which is a sinusoid with amplitude of vibration A, angular 

frequency ωn, and phase shift ϕ: 

 

𝑥(𝑡) = 𝐴 sin(𝜔𝑛𝑡 + 𝜙) (7.3) 
 

The second derivative of x(t) with respect to time is then: 

 

𝑑2𝑥(𝑡)

𝑑𝑡2
= −𝐴𝜔2 sin(𝜔𝑛𝑡 + 𝜙) (7.4) 

 

Substituting Eq. (7.3) and (7.4) into Eq. (7.2) and simplifying yields the following requirement for ωn: 

 

𝜔𝑛 = √
𝑘

𝑚
 (7.5) 

 

The frequency of vibration of the spring-mass system when it is freely vibrating is related to the stiffness of system k 

and its mass m but is independent of other factors such as the amplitude of vibration and the initial disturbance. ωn, 

is commonly referred to as the natural frequency of the system because it represents how quickly the system oscillates 

under free vibration and is purely defined by the system’s inherent mechanical properties k and m. Stiffer systems, 

which have a large value of k, will hence have a high natural frequency and will vibrate quickly. On the other hand, 

systems with a higher mass have more inertia and will vibrate more slowly.  

 

The natural frequency expressed in terms of cycles per second (hz), fn, and the natural period, Tn, can be defined as: 

 

𝑓𝑛 =
1

2𝜋
𝜔𝑛 =

1

2𝜋
√
𝑘

𝑚
 (7.6) 

 

Note: When the mass is vibrating, the inertial force is its 

resistance to being accelerated. Using Newton’s second law, 

Fi = ma(t). 

 

 

 

Note: Eq. (7.2) is called a differential equation because it 

relates a function, x(t), to one or more of its derivatives. 

Solving a differential equation means obtaining the unknown 

function x(t). In this case, the acceleration a(t) is related to 

x(t) by: 

 

𝑎(𝑡) =
𝑑2𝑥(𝑡) 

𝑑𝑡2
 

 

Differential equations such as Eq. (7.2) have a useful 

property called uniqueness. This means that if a function x(t) 

satisfies the equation, and other conditions, then it is the only 

correct solution. The existence and uniqueness of solutions 

to differential equations is discussed further in more 

advanced calculus courses.   

 

 

 

 

 

 

 

 

Note: ωn has units of rad/s. Expressing the natural frequency 

in units of cycles per second requires converting ωn to fn 

using Eq. (7.6). 

 

 

 

 

Note: the period T is the time elapsed as one full cycle takes 

place.  
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𝑇𝑛 =
1

𝑓𝑛
= 2𝜋√

𝑚

𝑘
 (7.7) 

 

Note that when solving Eq. (7.2), we have not determined the values of the amplitude of vibration A or the phase shift 

ϕ. These parameters can be solved if the displacement and acceleration corresponding to t = 0 are known (i.e., x(t=0) 

= xo and a(t=0) = ao respectively). xo and ao are referred to as initial conditions.  

 

Consideration of Gravity 

Although we neglected the presence of gravity when defining and solving Eq. (7.2), consider the effect of adding the 

gravitational force, which acts downwards, to the free body diagram in Fig. 7.2. The sum of forces can then be written 

as:  
𝐹𝑖(𝑡) + 𝐹𝑠(𝑡) = 𝐹𝑔 = 𝑚𝑔 (7.8) 

 

Introducing the displacement x(t) and the acceleration a(t) results in a slightly modified version of Eq. (7.2): 

 

𝑚
𝑑2𝑥(𝑡)

𝑑𝑡2
+ 𝑘𝑥(𝑡) = 𝑚𝑔 (7.9) 

 

Again, this can be solved using a sinusoidal function. However, the mass will now oscillate around a value of x = Δo 

instead of x = 0: 

 

𝑥(𝑡) = 𝐴 sin(𝜔𝑛𝑡 + 𝜙) + Δ𝑜 (7.10) 
 

Substituting Eq. (7.10) into Eq. (7.9) results in the same equation for ωn as before and produces the following condition 

for Δo: 

kΔ𝑜 = 𝑚𝑔 (7.11) 
 

Therefore, the system does not oscillate about the undeformed length of the wire when gravity is present. Instead, it 

oscillates about the resting position under the weight of the mass, which is Δo, the elongation of the spring due to the 

gravitational force. The inclusion of gravity does not influence the frequency of vibration, and hence our equations 

for ωn, fn and Tn are still valid.  

 

A plot of the position of the mass over time, x(t), is shown in Fig. 7.3. When reading the plot, note that downwards 

displacements are taken as positive (as defined in Fig. 7.2). 

 

 

 

 

 

 

 

 

 

 

Note: Solving for A and ϕ using the initial conditions, xo and 

ao will not be required in CIV102.  
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Fig. 7.3 – Displacement of a spring-mass system under free vibration. 

 

Other Methods for Calculating ωn 

The natural frequency fn is an important parameter as it allows us to determine if a structure is susceptible to time-

varying loads. Although Eq. (7.6) can be used to calculate it, determining the stiffness k can be difficult if the structure 

has a complex geometry. A more convenient approach is to instead define the natural frequency in terms of the vertical 

displacement of the structure under gravity loads. This can be done by re-arranging Eq. (7.11) to express k in terms 

of Δo: 

𝑘 =
𝑚𝑔

Δ𝑜
 (7.12) 

 

Substituting Eq. (7.12) into Eq. (7.6) results in the following expression for fn: 

 

𝑓𝑛 =
1

2𝜋
√
𝑚𝑔

Δ𝑜
⋅
1

𝑚
=
1

2𝜋
√
𝑔

Δ𝑜
 (7.13) 

 

If the acceleration due to gravity is taken as 9,810 mm/s2 and Δo is in units of mm, then fn can be calculated as: 

 

𝑓𝑛 =
1

2𝜋
√
9,810

Δ𝑜
≅
15.76

√Δ𝑜
 (7.14) 

 

Thus, the natural frequency can be conveniently calculated for a structure if its static displacement, Δo is known.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The response of structures under time-varying or 

dynamic loads is discussed in Lecture 19. 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Eq. (7.14) requires Δo to be in units of mm, otherwise 

the resulting answer will be incorrect.  
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Lecture 8 – Factors of Safety: Dead vs. Live Load, Brittle vs. Tough 
Overview 

Although previous lectures have introduced the necessary tools to design structures in idealized conditions, 

uncertainties in the expected loads on the structure and the strength of the materials used must be considered to avoid 

failure. This lecture describes the concept of working stress design, which employs factors of safety to carry out design 

safely.  

 

Dead and Live Loads 

When designing structures to safely carry loads, it is common to distinguish between the different kinds of loads which 

can be expected. In CIV102, we will primarily focus on dead loads and live loads.  

 

Dead loads are loads which remain constant over the lifetime of the structure. Examples of dead load include the self-

weight of the structure and the self-weight of nonstructural components which are attached to the structure (sometimes 

referred to as superimposed dead loads).  

 

Live loads are loads which vary over time and are primarily attributed to the use of the structure by people. Examples 

of live loads include the weight of a crowd of people, the weight of vehicular traffic on a bridge, or the weight of 

objects which are not permanently attached to the structure such as furniture. The weight of a tightly packed crowd of 

people is a significant live load, which has traditionally been approximated as 100 lbs per square foot, which converts 

to a load of about 5 kPa.  

 

Other types of loads which are commonly considered when designing structures include wind loads, snow loads, and 

earthquake loads.  

 

Structural Failure 

Failure occurs when the stresses in the structure caused by the applied loads, σdemand, equals or exceed the strength of 

the materials, σcapacity: 

 
𝜎demand ≥ 𝜎capacity (8.1) 

 

Although this concept is relatively straightforward, consideration must be made to account for uncertainty in the loads, 

as well as uncertainty in the strengths of the materials used to build the structure. A dangerous situation may occur if 

the loads are higher than expected and/or the strength of the materials is lower than specified. This variation in the 

capacity and demand is illustrated in Fig. 8.1, where the two curves represent the probability distributions of the 

demand (red) and capacity (blue). The height of the curves represents the likelihood of the capacity or demand being 

a certain value.  

 

Fig. 8.1 describes a situation where the expected capacity exceeds the expected demand on average. However, there 

is substantial overlap between the two curves due to the variability in the both the applied loads and the strength of 

the materials. The overlap, while not the probability of failure, nonetheless suggests that there is a reasonable chance 

that Eq. (8.1), our failure condition, may be satisfied. Therefore, simply designing so that the expected strength is on 

average higher than the expected demand is not a sufficient method to ensure that the resulting structure is safe.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The region where the two curves overlap does not 

represent the probability of failure.   
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Fig. 8.1 – A comparison of applied stresses vs. the strength of the material. Although the average demand is less 

than the average capacity, there is substantial overlap between the two curves where failure occurs.  

 

Factors of Safety 

To account for the uncertainty in the loads and strength of the materials, the concept of a factor of safety (FOS) is 

used in engineering design. The factor of safety is a measure of the capacity in the system relative to its demand. In 

structural engineering, the capacity refers to the strength of the materials and the demand refers to the stresses caused 

by applied loads. If the factor of safety is less than 1.0, then the demand exceeds the capacity and failure occurs.  

 

𝐹𝑂𝑆 =
Capacity

Demand
 (8.2) 

 

In practice, factors are safety are employed to reduce the permissible demand in order to reduce the likelihood of 

failure occurring to an acceptable level. This is known as working stress design, in which the maximum allowable 

stress in the structure, σallow, is calculated as: 

 

𝜎𝑎𝑙𝑙𝑜𝑤 =
𝜎fail
𝐹𝑂𝑆

 (8.3) 

 

In Eq. (8.3), σfail is the stress which causes the structure to fail. The benefit of using factors of safety is illustrated 

when comparing Fig. 8.2, shown on the following page, to Fig. 8.1. By employing a factor of safety to limit the stress 

permitted in the structure to be σallow, the area where the two curves overlap has been significantly reduced, which 

reduces the likelihood of a failure taking place.   

 

 

Note: Failure is not a straightforward concept to define, as 

it depends on the criteria used to determine what constitutes 

failure. Common metrics used to define failure include when 

the material begins to experience permanent deformations (σ 

= σyield), when the material breaks (σ = σult), or when the 

deformations of a structure exceed an acceptable value (Δ 
≥ Δmax).  

 

 

 

 

 

 

 

 

 

 

 

 

Note: Values of the factor of safety are chosen in order to 

limit the probability of failure to be less than an acceptable 

value. Using working stress design, the factor of safety 

depends both on the quality of the material and the danger 

of the failure mode in question. Larger factors of safety are 

employed against failure mechanisms which are sudden and 

cause more catastrophic consequences. 
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Fig. 8.2 – Reduced likelihood of failure by employing a factor of safety. 

 

 

Examples of Safety Factors in Engineering Design: 

Fig. 8.3 shows some suggested values for factors of safety as recommended by William Rankine, as well as the actual 

factors of safety used in the Brooklyn Bridge, the Golden Gate Bridge, and more recently the Akashi Kaikyo Bridge. 

The factors of safety suggested by Rankine are very large (up to 10!) compared to those employed in modern design, 

which are typically around 2.0. This is due to advances in design/construction practices and improvements in 

predicting the loads which structures may be subjected to over their lifetime.   

 

 

 

Fig. 8.4 – Stress-strain characteristics of steel used in the main cables of the Golden Gate Bridge. 

 

 

 
Fig. 8.3 – Suggested values of safety factors and historic 

values of safety factors used in suspension bridges 



CIV102H1F CIV102 Course Notes September 2021 

        

 

33 

 

Lecture 9 – Weight a Moment! What is I? 
Overview: 

In the previous chapters, we have discussed the basic equations for stress and strain which are sufficient for studying 

members subjected to direct tension. However, they are inadequate for describing the behaviour of members which 

bend when carrying bending moments or when buckling under compression forces. In this chapter, the fundamentals 

of rotational motion are discussed. Although structures rarely experience significant rotations, the concepts used to 

describe rotational motion are analogous to those needed to explain the behaviour of structures when they bend.  

 

Relating a Moment to the Angular Acceleration of a Point Mass 

Consider the system shown in Fig. 9.1, which shows a point mass m attached to a pivot point by means of a weightless, 

rid rod with length y. If a pure moment M is applied to the system, the mass will spin around the axis of rotation with 

an angular acceleration of α radians per second squared.  

 
Fig. 9.1 – Point mass rotating as a result of an applied moment. 

 

The relationship between the moment and the angular acceleration can be determined by considering the effective 

translational force applied to the mass and the corresponding translational acceleration. Recall from Lecture 2 that a 

moment is the product of a force, F, and a perpendicular distance to a reference point, which is referred to here as y: 

 

𝑀 = 𝐹𝑦 (9.1) 
 

The translational acceleration of the mass, a, is related to the angular acceleration, α, in the same way that the length 

of a circular arc is equal to the product of the radius and the angle traversed:  

 

𝑎 = 𝛼𝑦 (9.2) 
 

Now that the force and acceleration are known, they can be related to each other using Newton’s second law of motion, 

which is F = m×a. This allows Eq. (9.1) and (9.2) to be combined: 

 

𝑀 = 𝐹𝑦 = (𝑚𝛼𝑦)𝑦 = 𝑚𝛼𝑦2 (9.3) 
 

  

 

 

 

 

 

 

 

Note: the distance used for rotational motion, taken here as 

y, is often taken as r in other courses.  
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Grouping the mass and length terms produces the following result: 

 

𝑀 = (𝑚𝑦2)𝛼 (9.4) 
 

The term my2 describes the resistance of the mass to rotation and is analogous to the concept of inertia used in Newton’s 

laws of motion. Rewriting Eq. (9.4) to be applicable to more complex situations than the simple example shown in Fig. 

(9.1) results in the fundamental equation of rotational motion: 

 

𝑀 = 𝐼𝑚𝛼 (9.5) 
 

In Eq. (9.5), Im is the moment of inertia and has dimensions of mass × length squared.  

 

Defining the moment of inertia, Im 

The resistance of a point mass to rotation about an axis is defined as its moment of inertia, Im. For a small object which 

has mass mi and is located a distance yi away from the axis of rotation, its individual moment of inertia Im,i is defined 

as: 

𝐼𝑚,𝑖 = 𝑚𝑖𝑦𝑖
2 (9.6) 

 

Although Eq. (9.6) allows us to calculate the moment of inertia for a point mass relative to an axis of rotation, how can 

we extend it to consider objects whose mass is not distributed at a single point? Consider the body shown in Fig. 9.2 

which has been subdivided into many discrete point masses Δmi which are each located a distance of yi relative to the 

axis of rotation. The moment of inertia of the body is the sum of the moments of inertia of each point mass, Im,i, over 

the whole body: 

𝐼m ≅∑𝐼𝑚,𝑖 =∑Δ𝑚𝑖𝑦𝑖
2  (9.7) 

 

 
Fig. 9.2 – Calculation of Im for a two-dimensional body which has been discretized into smaller pieces. 

 

Eq. (9.7) is an approximation for Im, as the value of Im obtained using the equation depends on how finely we have 

subdivided the original body. The approximation becomes more accurate as we subdivide the body into smaller pieces, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: ∑ is used to denote the summation of terms (typically 

over n terms). Eq. (9.3) can be expanded to be: 

 

∑Δ𝑚𝑖𝑦𝑖
2 = Δ𝑚1𝑦1

2 + Δ𝑚2𝑦2
2 +⋯+ Δ𝑚𝑛𝑦𝑛

2 
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which in turn reduces the size of the individual point masses. If we take the limit as Δmi approaches zero, then the 

summation can be instead replaced by an integral and Im can be calculated exactly:  

 

𝐼m = lim
Δ𝑚𝑖→0

∑Δ𝑚𝑖𝑦𝑖
2 = ∫ 𝑦2𝑑𝑚

𝑀

 (9.8) 

 

Eq. (9.8) is the definition of the moment of inertia for a finite body, which is the sum of the moments of inertia 

contributed by the infinitesimally small point masses dm over the entire mass M.  

 

In the special case where the body under consideration is a two-dimensional object having a uniform density with 

dimensions of mass per area, then dm can be written as the product of the density ρ and a differential area dA: 

 

𝑑𝑚 = 𝜌𝑑𝐴 (9.9) 
 

Equations (9.8) and (9.9) can hence be combined to produce the following result:  

 

𝐼𝑚 = ∫ 𝑦2𝑑𝑚
𝑀

= 𝜌∫ 𝑦2𝑑𝐴
𝐴

  (9.10) 

 

The moment of inertia is thus the product of the density of the material multiplied by an integral term which consists 

of purely geometric properties. The integral term is known as the second moment of area, I, which has dimensions of 

length4. 

𝐼 = ∫ 𝑦2𝑑𝐴
𝐴

 (9.11) 

 

Physical Interpretation of the Moment of Inertia: 

By examining Eq. (9.6) to Eq. (9.8), the following properties can be understood about the moment of inertia, Im. These 

properties are also true for the second moment of area, I, if the references to mass instead refer to area. 

 

1. Im depends on the location and orientation of the axis of rotation, as this affects the term yi.  

2. Masses which are located further away from axis of rotation tend to have a larger contribution to Im compared 

to masses which are located closer to the axis of rotation. 

 

To illustrate these properties, consider the steel I-beam shown in Fig. (9.3). Its designation, W530×92, refers to its 

nominal height of 530 mm and weight of 92 kilograms per metre of length. The central image in the figure shows the 

member being rotated about its y-axis, and the image on the left shows the member being rotated about its x-axis. It 

can be seen that the member has a substantially larger second moment of area taken about its x-axis compared to its y-

axis. This is because the majority of its area is distributed far away from the axis of rotation when it is aligned about 

its x-axis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Eq (9.10) is only valid if ρ does not vary over the area 

of the body. If it does, then it must be included inside of the 

integral.  
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Fig. 9.3 – Sample values of I for a W530×92 I-beam. 

 

Example Calculation of I: Rectangle 

A simple example of applying Eq. (9.11) is to find the second moment of area of a rectangle about its own centroid, 

which is located at its mid-height. We begin the process by expressing a small area of the rectangle, dA, as the product 

of the rectangle’s width b and a small thickness dy, as shown in Fig. 9.4.  

 

𝑑𝐴 = 𝑏𝑑𝑦 (9.12) 
 

We can now calculate the second moment of area by substituting Eq. (9.12) into the definition of I and then integrating 

over the height of the rectangle, which is from y = -h/2 to y = h/2: 

 

𝐼 = ∫ 𝑏𝑦2𝑑𝑦

ℎ
2

−
ℎ
2

=
1

3
𝑏𝑦3|

−
ℎ
2

ℎ
2

=
1

3
𝑏 ((

ℎ

2
)
3

− (−
ℎ

2
)
3

) (9.13) 

 

Evaluating Eq. (9.13) results in a simple expression for I of a rectangle which is rotating about an axis at its mid-height: 

 

𝐼 =
𝑏ℎ3

12
 (9.14) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9.4 – Derivation of the second moment of area of a 

rectangle about its centroid. Each “slice” of area has a 

thickness of dy.  
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Lecture 10 – Introduction to the Bending of Beams 
Overview: 

In this lecture, the principles discussed in previous chapters are used to derive equations describing the behaviour of 

members which bend.  

 

Fundamental Assumption for Bending: Plane Sections Remain Plane 

Consider a series of vertical lines on a beam which are drawn a distance Lo apart. As the beam is bent, it will curve to 

form the arc of a circle. These lines will remain straight but will rotate so that on one side of the beam, say the top, 

they are slightly further apart, and on the other side, the bottom, they are slightly closer together. At the centroid of 

the beam, these lines retain a separation of Lo. This phenomenon was described by Robert Hooke in 1678 using the 

phrase “plane sections remain plane” and is illustrated in Fig. 10.1. One way to quantify how much the beam has 

bent is to measure the relative angle between two vertical lines, θ, and divide this angle by the original distance 

between them, which is Lo. The resulting quantity is called the average curvature. In general, the curvature ϕ is more 

rigorously defined as the change of this angle θ along the length of the member, x.  

 

𝜙 =
𝑑𝜃

𝑑𝑥
 (10.1) 

 

A property of the curvature is that the quantity 1/ϕ is equal to radius of the circle formed by the beam after it has been 

curved. This quantity is known as the radius of curvature.  

 

Bending of the member produces strains in the member because the distance between the vertical lines is no longer 

equal to the original spacing Lo except at the centroid. Consider the spacing of points A and B which are drawn on the 

beam in Fig. 10.1 and located a distance y above the centroidal axis. After the beam has been bent with a curvature ϕ, 

the change in angle between A and B is equal to θAB =  ϕ × Lo, and the distance between these points and the centre 

of the circle will be y + 1/ϕ. Using this information, the distance between points A and B after the beam has been 

curved, LAB’, can be calculated as: 

 

 𝐿𝐴𝐵
′ = (𝜙𝐿𝑜) ⋅ (𝑦 +

1

𝜙
) = 𝜙𝑦𝐿𝑜 + 𝐿𝑜  (10.2) 

 

Using the deformed length, we can now calculate the strain of the member between points A and B which are located 

a distance y above the centroidal axis:  

 

𝜀(𝑦) =
Δl

𝐿𝑜
=
𝐿𝐴𝐵
′ − 𝐿𝑜
𝐿𝑜

  (10.3) 

 

Substituting Eq. (10.2) into Eq. (10.3) yields the fundamental relationship between the strains in the member, ε, and 

its curvature, ϕ: 

 

𝜀(𝑦) = 𝜙𝑦 (10.4) 
 

  

 
Fig. 10.1 – Figure illustrating Robert Hooke’s 1678 

hypothesis that when members are subjected to pure 

bending, “Plane Sections Remain Plane”. The vertical lines 

drawn on the side of the member remain straight when it is 

curved. 
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The strains in a member subjected to pure bending are not constant over the cross section as was the case for pure 

tension. Rather, they vary linearly along the height, from a maximum tensile strain on one side of the member to a 

maximum compressive strain on the other. The strain at the height of the centroid, which is the axis about which each 

section rotates, is equal to zero. These observations are summarized in Fig. 10.2.  

 
Fig. 10.2 – Strain profiles caused by pure bending. Note that for a beam made of a linear elastic material, ε = 0 at the 

centroidal axis (y = 0). 

 

Flexural Stiffness – Determining the Relationship between Bending Moment and Curvature 

When we were studying the behaviour of members subjected to axial force, we were interested in calculating the axial 

stiffness of the member, k, which related the tension in the member to its elongation. For members which bend, we 

are instead interested in the relationship between the moment carried by a member, M, and its curvature, ϕ. Just like 

how we used the definitions of stress and strain to derive the axial stiffness of a member, we will do the same to derive 

the flexural stiffness based on our assumption that plane sections remain plane.  

 

To begin, we can first determine the stresses in a member which has a curvature ϕ if we know the Young’s modulus 

of the material, E:  

𝜎 = 𝐸𝜀 → 𝜎(𝑦) = 𝐸𝜙𝑦 (10.2) 
 

Eq. (10.2) states that like the strains ε, the stresses σ also vary linearly across the height of the cross section. To 

understand how the distribution of stresses is related to the bending moment, consider a thin slice of the cross section 

with area ΔA. The stresses in this slice of the cross-sectional area act uniformly over ΔA if ΔA is relatively small, 

producing a force ΔF which can be calculated using our definition of stress: 

 

𝜎 =
𝐹

𝐴
→ Δ𝐹 = 𝜎(𝑦)Δ𝐴 (10.3) 

 

Because the force ΔF does not necessarily pass through the centroidal axis of the member, it will produce a turning 

effect. The moment ΔM caused by ΔF acting a distance y away from the centroidal axis can be calculated using our 

definition of a moment: 

 

𝑀 = 𝐹 ⋅ 𝑑 → Δ𝑀 = Δ𝐹 ⋅ 𝑦 (10.4) 
 

Substituting the Eq. (10.2) and (10.3) into (10.4) yields the following expression for ΔM: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The process of calculating the resulting bending 

moment from the linearly varying strains is shown in Fig. 

10.3. The flexural stresses, shown in the second figure, act 

over a differential area of the cross section, dA, producing a 

force dF. These forces, shown in the third figure which shows 

a slice of the beam from elevation view, produce a moment 

on the left side which equilibrates the applied bending 

moment on the right side.    

 

 
Fig. 10.3 – Summary of how the bending moment carried 

by a member is determined if the distribution of strains is 

known from the curvature.  
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Δ𝑀 = 𝜙𝐸𝑦2∆𝐴 (10.5) 
 

We can now find the total moment carried by the member by summing the turning effects caused by each piece of 

area in the cross section. If we used slices with a nonzero thickness, this will be an approximation of the true moment 

because the resulting sum will depend on the size of the slides considered. As the thickness of each slice becomes 

infinitesimally small, ΔA approaches zero and the summation sign is instead replaced with an exact integral:  

 

𝑀 = lim
𝑑𝐴→0

∑𝜙𝐸𝑦2Δ𝐴 =∫ 𝜙𝐸𝑦2𝑑𝐴
𝐴

 (10.6) 

 

In Eq. (10.6), we can move ϕ out of the integral because the curvature of the member is constant over the cross section 

and not a function of A. If the member is made of the same material over the whole cross section, we can also remove 

E from the integral, which results in the following expression for M:  

 

𝑀 = 𝜙𝐸∫ 𝑦2𝑑𝐴
𝐴

 (10.7) 

 

By examining Eq. (10.7), we recognize that the integral of y2 over the area of the cross section is the definition of the 

second moment of area, I, which was introduced in Lecture 9. Substituting this property into the equation yields the 

final result: 

𝑀 = 𝐸𝐼 ⋅ 𝜙 (10.8) 
 

In Eq. (10.8), EI is the flexural stiffness of the member. Like the axial stiffness k, which was derived in Lecture 5, 

the flexural stiffness EI also relates a force-based quantity, the bending moment, to a displacement-based quantity, 

the curvature. Similarly, it is a function of both the stiffness of the material, E, and the geometric stiffness provided 

by the shape of the cross section, I. This comparison is shown in Fig. 10.4. 

 

 
Fig. 10.4 – A comparison of the axial and flexural stiffnesses of a member. 
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Lecture 11 – Statically Determinate Structures 
Overview: 

Structural engineering is primarily concerned about determining how structures transfer loads from one location to 

another. For most civil structures, this involves transmitting vertical loads (i.e. gravity loads) or horizontal loads (i.e. 

wind loads or earthquake loads) to the ground. In this chapter, the basics of structural analysis are introduced, 

beginning with the determination of reaction forces for statically determinate structures.  

 

Supports 

Supports are the elements which hold up the structure and transmit the forces carried by the structure to the ground 

below. Examples of supports include bearing pads, foundations, and hinges, which all transmit some degree of force 

and/or moment to support the structure and prevent it from accelerating. The forces/moments which are supplied by 

supports to hold up the structure are called reaction forces.  

 

Reaction forces are closely related to the level of restraint which a support can provide. For example, a hinge support 

which is well-anchored to the ground can prevent an attached structure from moving translationally but will freely 

swivel. Hence, a hinge can provide reaction forces which resist translational movement but cannot provide any 

moment to prevent rotation. The key principle is that increasing the amount of restraint provided by the support 

increases, increases its ability provide a reaction force along that that degree of freedom, and vice-versa.  

 

In structural engineering, we typically define three common types of supports which are called rollers, pins and fixed 

ends. Solving any structural engineering problem typically first involves calculating the reaction forces which these 

supports provide to the structure. Table 11.1 describes each type of support, its permitted degrees of freedom, and the 

support reactions which can be supplied to the attached structure. 

 

Table 11.1 – Types of supports and their reaction forces 

Name Symbol 

Permitted 

Degrees of 

Freedom 

Restrained 

Degrees of 

Freedom 

Support Reactions 

Roller  

Δx, θxy Δy = 0 Fy 

 

Δy, θxy Δx = 0 Fx 

Pin 

 

θxy Δx = Δy = 0 Fx, Fy 

Fixed end 

 

None Δx = Δy = θxy = 0 Fx, Fy, Mxy 

  

 

 

 

 

 

 

 

 

 

 

 

Note: A simple example of a hinge support are the hinges 

which fasten a door to a door frame. These hinges prevent 

the door from translating, but do not provide any resistance 

to the door being swung open.  

 

 

Note: Real supports cannot perfectly restrain a structure like 

the idealized pins, rollers and fixed ends described in Table 

11.1. Choosing which idealized support best reflects realistic 

conditions requires engineering judgement and experience.  

 

Note: The degrees of freedom, when used to refer to 

geometric situations such as 2-D space or 3-D space, are the 

variables required to describe the position and orientation 

of a body. Three degrees of freedom are needed to define a 

non-deformable body in 2-D space. These are: 

1. Position in the x-direction  

2. Position in the y-direction 

3. Rotational orientation in the x-y plane 

A body which deforms may require more degrees of freedom 

to describe its position, orientation, and deformed shape. 
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Solving for Reaction Forces – Free Body Diagrams 

Solving for the reaction forces requires understanding how the loads carried by the structure are distributed to the 

supports on which it sits. Consider the structure shown in Fig. 11.1, which is a beam supported by a pin and roller and 

carrying three masses, m1, m2 and m3: 

 
Fig. 11.1 – Simply supported beam carrying three weights. 

 

A complete understanding how the structure transmits the weight of the three masses to the ground below can be 

obtained by drawing a series of free body diagrams. Five free body diagrams can be drawn which each describes the 

interaction between an applied load or support and the structure. The sixth free body diagram is of the structure itself 

being subjected to the various applied loads and reaction forces caused by the supports and weights. These free body 

diagrams are shown below in Fig. 11.2: 

 
Fig. 11.2 – Free body diagrams demonstrating how the weight of the three loads is transferred to the ground. 

 

In Fig. 11.2, FN is the normal force supplied by the beam to hold up the masses, Fg is the force of gravity acting on 

each mass and Ax, Ay and By are the reaction forces. The self-weight of the beam is ignored. When drawing these free 

body diagrams, the following two rules have been used: 

 

1. According to Newton`s third law of motion, the force applied to the structure by an applied load or support 

is equal and opposite to the force applied by the structure to the applied load or support.  

2. When drawing in a force which is unknown, like an undetermined reaction force, any assumed direction will 

suffice. The assumed direction will not affect the solution as long as the equilibrium equations are consistent 

with the drawn free body diagram.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: If the assumed direction is incorrect, then the resulting 

value obtained by solving the equations of equilibrium will 

be a negative number.  
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Because the system as a whole is in equilibrium, each subsystem will also be in equilibrium, and hence the equilibrium 

equations must be satisfied for each free body diagram. As noted in Lecture 3, these equations are:  

 

∑𝐹𝑥 = 0 (11.1) 

 

∑𝐹𝑦 = 0 (11.2) 

 

∑𝑀 = 0 (11.3) 

 

These equations can then be used to determine the unknown reaction forces, Ax, Ay and By once the appropriate free 

body diagrams have been drawn. Typically, the most useful free body diagram to consider is the free body of the 

structure itself being subjected to the applied loads and reaction forces.  

 

Statically Determinate Structures 

Structures whose reaction forces can be directly solved using the three equations of equilibrium are called statically 

determinate. Statically determinate structures have the property where the reaction forces are purely a function of the 

size, quantity, location, and direction of the applied loads, and are unrelated to the stiffness of the structure. This 

occurs if the number of unknown reaction forces is equal to the number of equilibrium equations. Most simple 2-D 

structures are statically determinate if their supports provide a total of three reaction forces.   

 

Structures which have fewer reaction forces than the number of equilibrium equations are called mechanisms. This is 

because they are unstable and can accelerate when subjected to an applied load.  

 

Structures which have more reaction forces than the number of equilibrium equations are statically indeterminate. 

The reaction forces cannot be directly solved using the equilibrium equations alone, and hence must consider other 

factors such as the stiffness of the structure and positioning of the applied loads. The degree of indeterminacy is a 

measure of how statically indeterminate a structure is and is equal to the number of reaction forces minus the number 

of equilibrium equations.  

 

Examples of the three situations can be found in Fig. 11.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 11.3 – Examples of a statically determinate structure, a 

mechanism, and a statically indeterminate structure.  

 

 

Note: Many building structures are statically indeterminate. 

Solving for their reaction forces and internal stresses 

requires more advanced analysis methods than those 

covered in CIV102.  
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Example: Structures with an Internal Hinge 

Some structures are built with an internal hinge which connects two substructures together. Because a hinge freely 

rotates and is unable to resist moment, it has the effect of reducing the indeterminacy of the structure by one for each 

internal hinge. The following example illustrates how to account for hinges in a structure when solving for the reaction 

forces.  

 
Fig. 11.4 – Example of a frame structure containing an internal hinge. 

 

Consider the frame shown above in Fig. 11.4 which is carrying a point load, P, acting downwards on the top beam. 

The frame is supported on two pins, resulting in 2 × 2 = 4 unknown reaction forces. Although this might suggest that 

the structure is statically indeterminate, we can take advantage of the internal hinge to solve for these unknown forces. 

To do this, two free body diagrams which cut through the hinge are drawn, which reveals the two internal hinge forces. 

Because each free body diagram is in equilibrium, we have a total of six equilibrium equations (three from each free 

body diagram) which we can use to solve for the four reaction forces and two internal hinge forces. These free body 

diagrams are shown below in Fig. 11.5. 

 

 
Fig. 11.5 – Free body diagrams of the frame after it has been separated at the hinge. 

 

The three equilibrium equations which correspond to Free Body Diagram A are shown below. Note that the moment 

equation is taken about point A, the left support.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: When the frame is cut and separated at the internal 

hinge, the hinge forces must be drawn in opposite directions 

on the two free body diagrams. This is to ensure that the 

forces cancel out when the frame is “put back together”.   
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∑𝐹𝑥 = 0 → 𝐴𝑥 − 𝐶𝑥 = 0 (11.4) 

 

∑𝐹𝑦 = 0 → 𝐴𝑦 − 𝐶𝑦 = 0 (11.5) 

 

∑𝑀𝐴 = 0 → 𝐶𝑥 × ℎ = 0 (11.6) 

 

The three equilibrium equations corresponding to Free Body Diagram B are shown below, with the moment equation 

being taken about point B, the right support.  

 

∑𝐹𝑥 = 0 → 𝐵𝑥 + 𝐶𝑥 = 0 (11.7) 

 

∑𝐹𝑦 = 0 → 𝐵𝑦 + 𝐶𝑦 − 𝑃 = 0 (11.8) 

 

∑𝑀𝐵 = 0 → 𝐶𝑥 × ℎ + 𝐶𝑦 × 𝐿 − 𝑃 ×
𝐿

2
= 0 (11.9) 

 

Because we have six equations (Eqs. (11.4) to (11.9)) and six unknowns (Ax, Ay, Bx, By, Cx and Cy), we can solve for 

each force and hence the system is statically determinate.  
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Lecture 12 – A Bridge Over Troubled Waters 
Overview: 

In this chapter, truss bridge systems are discussed. Trusses, which are assemblies of steel or timber members connected 

to form lattice-like structures, resist loads by having their members carry axial tension and axial compression forces. 

The design process for truss bridges is introduced. 

 

Truss Bridges and their Historical Development 

Truss bridges were originally used by the Romans, who built them by connecting wooden members to cross distances 

which could not be achieved using bridges built using post-and-beam construction. None of these early bridges 

survived after the downfall of the empire, which led to this style of bridge construction being lost. During the 

Renaissance era, the Italian architect Andrea Palladio became the first to revive the use of wooden truss bridges and 

documented his designs in his Four Books of Architecture, which were published in 1570. An example of one of his 

designs, the Bridge of Cismone, is shown below in Fig. 12.2, and described in the excerpt shown in Fig. 12.3.  

 

 
Fig. 12.2 – Elevation (top) and plan (bottom) views of Palladio’s Cismone truss bridge. 

 

Palladio built his truss bridges by connecting wooden pieces together with iron clamps. Wooden truss bridges based 

on Palladio’s original designs continued to be in use until the early 20th century, when variants built out of cast iron 

or steel members bolted or riveted together became more common. Modern truss bridges are commonly built using 

steel members, often hollow tubes, which are bolted or welded together, and are primarily used for pedestrian or 

railway traffic.  

 

 

 

 
Fig. 12.1 – Portrait of Andrea Palladio, the Italian architect 

who produced the first written documentation of wooden 

truss bridges. 
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Trusses are an economical structural system for crossing moderate spans because the material is used efficiently, and 

they can be analyzed by a design engineer with relative ease. A fundamental assumption used in analysis is that the 

member connections are rotationally flexible, which allows them to be modelled as pins. A consequence of this 

assumption is that all of the members in the truss will either be in pure tension or pure compression.  

 

Design Process 

The process of designing a truss bridge is a straightforward but iterative task. At a high level, the design begins by 

first determining a suitable arrangement of the members which make up the bridge. An estimate of the loads applied 

to the bridge is then made, and these loads are used to calculate the forces which each member must safely carry. The 

members are then sized to carry these loads with an appropriate factor of safety. The bridge must then be checked to 

ensure that it is adequately stiff under service loads and can resist dynamic effects caused by vibrating or moving 

loads. The initial estimates of the loads must then be verified to ensure that they are do not underestimate the actual 

demand. Finally, the cost of the structure is estimated to determine the feasibility of the project. Iteration is often 

needed to resolve issues which may be encountered during any stage of the design process.  

 

The aforementioned process is explained in more detail below: 

 

1. Define the truss geometry. During this stage of the design process, the span, height, deck width, and configuration 

of the members must be determined. Increasing the height of the truss at the midspan has the advantage of reducing 

the magnitude of the forces in the top and bottom chords, but the increased amount of material needed may make this 

option uneconomical. Two examples of possible truss geometries are shown in Fig. 12.4 below.  

 

 
Fig. 12.4 – Examples of common truss designs: Warren truss (left) and Pratt truss (right). 

 

2. Estimate the joint loads. Once the geometry has been determined, the loads which the truss will carry must be 

obtained. Calculating these loads, which are represented as point loads applied to the truss where the deck meets the 

structure, is broken down into two processes: (a) estimating the weight carried by the deck due to dead and live loads, 

which are typically expressed as area loads, and (b) converting these area loads into discrete loads applied to the joints.  

 

The area load applied to the deck due to gravity, wtotal, is the sum of the deck weight, wdeck, the weight of the structural 

members, wstruct, and the live load of a large crowd of people, wlive: 

 

𝑤𝑡𝑜𝑡𝑎𝑙 = 𝑤𝑑𝑒𝑐𝑘 + 𝑤𝑠𝑡𝑟𝑢𝑐𝑡 +𝑤𝑙𝑖𝑣𝑒  (12.1) 
 

Note: Efficiency refers to the high strength and stiffness of 

truss structures relative to its cost and volume of material 

required to build them. 

 

Fig. 12.3 – An excerpt from Palladio’s work “I quattro libri 

dell'architettura” (Four Books of Architecture), describing 

the design of a wooden truss bridge. 
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When calculating wtotal, the live load, wlive, should be taken as 5.0 kPa, which is approximately equal to 100 lbs/ft2. A 

reasonable estimate of the deck load, wdeck, if it is made from wood is 1.0 kPa, and the weight of the structural members 

is typically between wstruct = 0.5 - 1.0 kPa when using hollow steel members to span distances of up to 100 m.  

 

The loads applied to each of the joints, Pi, are obtained by multiplying the area load, wtotal, by the tributary area of 

the deck, Atrib, which is the portion of the deck that the joint is responsible for supporting. This is shown below in Eq. 

(12.2): 

 

𝑃𝑖 = 𝑤𝑡𝑜𝑡𝑎𝑙𝐴𝑡𝑟𝑖𝑏 (12.2) 
 

The tributary area is obtained using the heuristic that each joint is responsible for carrying a deck area which extends 

halfway towards each of its neighbours. This can be seen in Fig. 12.5, which shows the view of the deck from above:  

 

 
Fig. 12.5 – Plan view of the deck, showing the tributary areas for an interior (middle) and edge (bottom right) joint. 

 

3. Solve for the reaction forces and analyze all of the forces in the members. This step is done using the tools 

described in Lecture 11 for obtaining the reaction forces, and the analysis methods discussed in Lecture 13.  

 

4. Size the members so that they can safely resist the loads. The method used to proportion the members to resist 

tension and compression loads is discussed in Lecture 15. 

 

5. Repeat steps 1-4 to design bracing to provide resistance against wind loads and instability effects. In addition 

to the vertical loads caused by gravity, structures must also resist horizontal loads due to high winds. The cross bracing 

used to resist the wind loads must also provide adequate support for long members in compression to avoid instability 

due to buckling. The process of designing braces to fulfill these functions is discussed in Lectures 16 and 17.  

 

6. Calculate the stiffness of the bridge by estimating its deflection at the midspan. A structure must be able to 

safely carry the applied loads while minimizing the accompanying deformations. A procedure to calculate the 

deflection of a truss structure called the Method of Virtual Work and is described in Lecture 18.  

 

 

 

Note: The values listed here are just suggestions. The actual 

loads are typically provided by a building standard, or 

regulatory body, or by a product supplier.  

CIV102H1F CIV102 Course Notes September 2021 

        

 

48 

 

7. Design against dynamic loads. In addition to being able to support a very large, slowly moving crowd of people, 

a truss bridge must be able to carry a smaller crowd of people walking over the bridge at a brisk pace. In this second 

situation, the bridge will be subjected to significant dynamic loading which can lead to large displacements and forces 

due to resonance. Lecture 19 presents a simple method to account for these dynamic effects.  

 

8. Check if the initial estimate of wstruct is greater than the actual weight of the bridge. At the beginning of the 

design process, an estimate of wstruct was needed to proceed with the design. During this stage of the design process, 

the true weight of the structural components is compared with the initial estimate, and if the initial estimate of wstruct 

is lower than the actual weight, then the design process must be repeated. This requirement is mathematically 

represented as: 

 

𝑤𝑠𝑡𝑟𝑢𝑐𝑡,𝑎𝑐𝑡𝑢𝑎𝑙 =
∑ 𝑙𝑖𝑤𝑖
𝑛
𝑖=1

𝐿 × 𝑤𝑑𝑒𝑐𝑘
≤ 𝑤𝑠𝑡𝑟𝑢𝑐𝑡,𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒  (12.3) 

 

In Eq. (12.3), n is the total number of members in the bridge, li and wi are the length and weight per unit length of 

each member, L is the span of the bridge and wdeck is the width of the deck.  

 

If Eq. (12.3) is not satisfied, the design must begin again from step 2 using a more conservative estimate of wstruct.   
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Lecture 13 – Truss Analysis: Method of Joints, Method of Sections 
Overview 

In this chapter, two methods used for the analysis of forces in truss bridges are discussed. The Method of Joints, which 

uses the two translational equations of equilibrium, is best suited for performing a complete analysis of the forces in 

a truss structure. On the other hand, the Method of Sections uses all three equations of equilibrium and is a useful 

technique for checking the forces in the structure at a particular location of interest.  

 

Pre-Analysis Steps 

Each of the methods presented herein are used to calculate the forces in the members caused by external loads at the 

joints. Joint forces, which are point loads applied to the structure at the joints, can be determined from distributed area 

loads by using the tributary area concept discussed in Lecture 12. This is process is illustrated in Fig. 13.2 

 
Fig. 13.2 – Truss bridge with distributed loads (left) and equivalent joint loads (right). 

 

Once the joint loads have been determined, the reaction forces can be calculated using the three equations of 

equilibrium. For a simply supported structure supported by a pin and roller on its two ends and carrying a uniform 

load, the vertical reactions are each equal to half of the total load due to symmetry. More complicated cases involving 

non-symmetric load patterns require using the full set of equilibrium equations to get the reaction forces.   

 

Fig. 13.3 shows a truss structure whose loads have been converted to joint loads and has had its reaction forces 

determined. The structure is now ready to have its member forces determined using either the Method of Joints or 

Method of Sections.  

 
Fig. 13.3 – Truss structure with joint loads and solved reaction forces. 

 

 

 

 

 

 
 

Fig. 13.1 – Summary of truss analysis for Palladio’s truss 

bridge over the Cismone River. 
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Method of Joints 

Conceptually, the Method of Joints involves evaluating the state of equilibrium in the structure one joint at a time. At 

each joint, the two translational equations of equilibrium are used to solve for the unknown forces carried in the 

members framing into the joint. Finding all of the forces in the structure is done joint-by-joint, two forces at a time.  

 

To illustrate how the Method of Joints works, we will apply it to the truss structure shown in Fig. 13.3 which has 12 

joints and 21 member forces. Due to symmetry, the number of unknown member forces can be reduced to 11, which 

is solvable by examining 6 joints. We will begin the analysis at joint A which has only two unknown members forces; 

with the exception of joint L, the other joints cannot be used as a starting point because they each contain three or 

more unknown member forces, which is greater than the two equations of equilibrium we have at our disposal.  

 

When drawing a free body diagram at a joint, both the external forces applied to the joint (due to the reaction loads or 

applied loads) and the internal forces in the attached members must be considered. To illustrate this, Fig. 13.4 shows 

a free body diagram of joint A. Also shown are the two unknown member forces, AB and AC, as well as the reaction 

forces, Ax and Ay (note that Ax = 0).  

 
Fig. 13.4 – Free Body Diagram of joint A. 

 

The corresponding equations of equilibrium are: 

 

∑𝐹𝑥 = 0 → 𝐴𝑥 + 𝐴𝐵𝑥 + 𝐴𝐶𝑥 = 0 (13.1) 

 

∑𝐹𝑦 = 0 → 𝐴𝑦 + 𝐴𝐵𝑦 = 0 (13.2) 

 

Substituting Ay = 150 kN into Eq. (13.2) and solving for AB results in the following: 

 

𝐴𝐵𝑦 = −150 → 𝐴𝐵 =
5

3
× (−150) = −250 kN (13.3) 

 

Once the force in member AB is known, the force in member AC can be determined using Eq. (13.1): 

 

𝐴𝐶 = 𝐴𝐶𝑥 = −𝐴𝐵𝑥 → 𝐴𝐶 = −
4

5
× (−250) = +200 kN (13.4) 

 

Note: Recall that for a member carrying an axial force F, its 

x- and y- components Fx and Fy are related to F by the 

inclination of the member: 

 

𝐹𝑥 = 𝐹 cos 𝜃 =
𝑎

𝑐
𝐹 

𝐹𝑦 = 𝐹 sin 𝜃 =
𝑏

𝑐
𝐹 
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Fig. 13.5 – Summary of member forces framing into joint A. 

 

After solving for the unknown forces, it is helpful to summarize them in a diagram like the one shown on the left free 

body diagram in Fig. 13.5. Because we found that the force in member AB was a negative number using our initial 

sign convention in Fig. 13.4, the direction has been reversed in Fig. 13.5. The x- and y- components of AB are also 

shown, which allows the state of equilibrium at joint A to be easily checked. Furthermore, it is clear that member AB 

is in compression as it pushes into joint A, and member AC is in tension because it pulls away from joint A.  

 

The force vector diagram in Fig. 13.5 graphically illustrates equilibrium of the joint by rearranging the forces in the 

free body diagram so that the tails and tips of each force are connected. Equilibrium is satisfied because the rearranged 

force vectors are able to form a closed path. 

 

Once the forces in member AB and AC have been solved by analyzing joint A, the process is repeated at an adjacent 

joint to solve for more unknown member forces. Joints B and C are possible candidates; however, joint C has three 

unknown member forces and hence cannot be solved yet. Therefore, we will move to joint B which only has two 

unknown forces to solve.  

 
Fig. 13.6 – Free Body Diagram of joint B. 

 

A free body diagram of joint B is shown in Fig. 13.6, which contains two unknown member forces, BC and BD, and 

force AB which we solved at joint A. Note the sign convention used to define the direction of the three forces: BC 

and BD are assumed to be in tension and pull away from the joint. AB, which was determined to be in compression 

from our analysis of joint A, is directed to push into joint B with a magnitude of 250 kN. The resulting equations of 

equilibrium are the following:  

 

Note: It is very easy to make errors with the sign convention 

and accidentally identify tension members as compression 

members and vice versa. Note the following rules: 

• If a force is assumed to pull away from the joint but 

is calculated to be negative using the corresponding 

equilibrium equations, then the member is in 

compression. 

• If a force is assumed to push into a joint but is 

calculated to be negative using the corresponding 

equilibrium equations, then the member is in 

tension.  

 

Extra care must be taken when carrying over the results from 

one joint to solve for the forces in an adjacent joint.  

 

Note: Although it is not immediately obvious how to 

determine if a member is in tension or compression based on 

a free body diagram of a joint, it is helpful to think of 

Newton’s third law: 

• If a member is in tension, the joints apply forces to 

the members which pull away from the member. To 

resist these forces, the member applies forces to the 

joints which pulls them together. 

• If a member is in compression, the joints apply 

forces to the member which push into the member. 

To resist these forces the member applies forces to 

the joints to push them apart.  

 

These principles are illustrated in Fig. 13.7 below: 

 

 
Fig. 13.7 – Compression and tension forces. 
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∑𝐹𝑥 = 0 → 𝐴𝐵𝑥 + 𝐵𝐷 = 0 (13.5) 

 

∑𝐹𝑦 = 0 → 𝐴𝐵𝑦 − 𝐵𝐶 = 0 (13.6) 

 

Solving for BC and BD can then be done by substituting the magnitude of the compression force in AC, 250 kN, into 

Eq. (13.5) and (13.6), which results in: 

 

𝐵𝐷 = −𝐴𝐵𝑥 = −
4

5
× (250) = −200 kN (13.7) 

 

𝐵𝐶 = 𝐴𝐵𝑦 =
3

5
× (250) = +150 kN (13.8) 

 

Summarizing these forces into the free body diagram shown below in Fig. 13.8 shows that member BD, like member 

AB, is in compression as it applies a force which pushes into joint B. Member BC on the other hand is in tension, 

applying a force which pulls away from joint B. The force vector diagram also shown in Fig. 13.8 also demonstrates 

that the joint is in equilibrium.  

 
Fig. 13.8 – Summary of member forces framing into joint B. 

 

With these results, the process continues at joint C, and repeats until all of the member forces have been found. The 

results of the complete analysis are shown below in Fig. 13.8, with tension forces indicated as positive and 

compression forces indicated as negative.  

 
Fig. 13.9 – Summary diagram showing the solved member forces in the truss bridge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: When interpreting a free body diagram of the joint, 

remember that the drawn forces are the forces applied by the 

member to the joint.  

 

 

 

 

 

 

 

 

 

 

 

Note: When presenting your solutions on assignments, 

quizzes and on the final exam, follow the same sign 

convention: members in tension are positive, and members 

in compression are negative.  
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Method of Sections 

Although the Method of Joints is a robust tool for solving for all of the forces in a truss structure, solving for member 

forces which are located far away from the starting point, like the ones close to the midspan in Fig. 13.9, is a tedious 

process because they can only found after the forces closer to the supports are known. A faster way to obtain these 

forces, which is suitable for checking the correctness of the results or performing a preliminary design, is to instead 

use the Method of Sections.  

 

The Method of Sections uses the three equations of equilibrium to solve for up to three unknown member forces which 

pass through a “section” of the truss structure. Using the method involves first cutting the structure apart with a line 

passing through the three members of interest. The equations of equilibrium are then applied to either of the resulting 

two substructures to solve for the unknown internal forces which were revealed by the section cut.  

 

To illustrate how to apply the Method of Sections, we will solve for the forces in members DF, EF and EG from our 

previous example. Figure 13.10 shows two free body diagrams, one for the left substructure and one for the right 

substructure, after the original structure was cut through these members. Because the original structure was in 

equilibrium, each substructure must also be in equilibrium and hence the forces of interest can be determined by 

examining either of the free body diagrams.  

 

 
Fig. 13.10 – Free body diagrams used in the Method of Sections to solve DF, EF and EG. 

 

In Free Body Diagram A, the translational equilibrium equations can be written as: 

 

∑𝐹𝑥 = 0 → 𝐷𝐹 + 𝐸𝐹𝑥 + 𝐸𝐺 = 0 (13.9) 

 

∑𝐹𝑦 = 0 → 150 + 𝐸𝐹𝑦 − 60 − 60 = 0 (13.10) 

 

When considering rotational equilibrium, the number of unknown forces which appears in the equation depends on 

the choice of reference point. A good choice of reference point in this example is joint E, which has two unknown 

forces, EF and EG, passing through it. This means that the resulting equation will only contain one unknown force, 

DF, allowing it to be easily solved. In general, it is a good idea to select a point which is common to two of the forces 

which need to be solved. The resulting equation is shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Defining the initial directions of the unknown forces is 

very important when using the Method of Sections. If the 

unknown forces are assumed to pull away from the joints, 

then positive values will correspond to tension and negative 

values will correspond to compression.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The resulting equations of equilibrium should only 

include the reaction force at a support, the joint loads 

applied to the substructure, and the three unknown internal 

forces which were revealed by the cut.  

CIV102H1F CIV102 Course Notes September 2021 

        

 

54 

 

 

∑𝑀𝐸 = 0 → 60 × 4 − 150 × 8 − 𝐷𝐹 × 3 = 0 (13.11) 

 

Eqs. (13.9) to (13.11) are a system of three equations with three unknowns (DF, EF, and EG), which when solved 

results in DF = -320 kN, EF = - 50 kN and EG = +360 kN. These results are consistent with our full solution shown 

in Fig. 13.9.  

 

Note that examining equilibrium of Free Body Diagram B in Fig. 13.10 would result in the same values of DF, EF 

and EG.  
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Lecture 14 – Euler Buckling of Struts 
Overview 

Slender members in compression can fail suddenly due to buckling. This chapter presents the derivation of Euler’s 

equation for predicting the load at which buckling takes place.  

 

Members in Compression 

Consider the prismatic member shown in Fig. 14.2. If the two ends of the member are subjected to tensile forces, T, 

the only way for the ends of the member to move apart is if the member elongates. The strains experienced by the 

member as it stretches can be calculated using the equation 𝜀 = ∆𝑙/𝐿𝑜, and the member will fail when the stress in 

the member, 𝜎 = 𝑇/𝐴, is equal to the ultimate tensile strength of the material.  

 

Consider now the members subjected to compression forces in Fig. 14.3. Under the compressive forces, the two ends 

of the member are forced to come together. However, unlike the member in tension, there are two possible ways for 

the member to deform to allow this to happen. The first way is for the member to simply shorten, which is the opposite 

of what would happen if it was instead in tension. The second way is if the member, instead of changing length, curves 

to bring the two ends together. These two actions are shown on the central and right figures in Fig. 14.3 respectively. 

 

Failure due to the first mode of deformation, which typically occurs for short, stocky members, is called crushing, 

and the force which causes crushing is sometimes referred to as the squash load. The second mode of failure, which 

commonly occurs in long, slender members, is called buckling. How a member fails depends on the relative amount 

of force required to cause crushing or buckling; whichever is easier will be the determining cause of failure.  

 

  
Fig. 14.2 – Members in tension. Fig. 14.3 – Members in compression. 

 

 

 
 

Fig. 14.1 – Soviet-era stamp celebrating the 250th birthday 

of the famous mathematician Leonard Euler. 
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Calculating the squash load of a member, Pcrush, is straightforward if the cross-sectional area A and the ultimate 

compressive stress, σcrush, are known: 

𝑃crush = 𝜎crush𝐴 (14.1) 
 

Calculating the load which causes buckling to take place is more challenging because failure involves the member 

bending. The solution to the buckling problem was eventually solved by Leonhard Euler in 1757, leading to his 

celebrated equation for the Euler load, or the load causing buckling, Pe:  

 

𝑃𝑒 =
𝜋2𝐸𝐼

𝐿2
 (14.2) 

 

Derivation of the Euler Load for Elastic Buckling 

Euler’s derivation of the buckling equation begins with the following assumptions on the member, shown in Fig. 14.4, 

which has a length of L and is being subjected to a compression force P which causes the member to curve as it 

buckles: 

i. The material is homogenous and linear elastic, having a uniform Young’s modulus, E, and second moment 

of area, I.  

ii. The top and bottom ends of the member are free to rotate. Furthermore, the top of the member is free to move 

vertically, and the bottom of the member is translationally fixed in place. 

iii. The member is initially perfectly straight and either end is free to translate horizontally.  

 

 
Fig. 14.4 – Derivation of Euler’s critical buckling load. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Recall that the product EI is the flexural stiffness of a 

member.  
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To investigate the how the member resists the load while in its curved position, a free body diagram can be drawn 

which cuts through the member a distance x away from the pin support. At the cut, the member is transmitting the 

compressive force P, which forms a counterclockwise couple with the reaction force at the base. To resist this couple, 

the bent member must also carry an internal moment M at the location of the cut, which rotates clockwise satisfy 

rotational equilibrium. Taking the sum of moments to equal to zero results in the following equation: 

 

𝑃 × 𝑦 = 𝑀 (14.3) 
 

In Eq. (14.3), y is the lateral displacement of the member relative to its original position. Recall that the moment 

carried by the member is related to its curvature, ϕ, by the flexural stiffness EI: 

 

𝑀 = 𝐸𝐼𝜙 (14.4) 
 

Substituting Eq. (14.4) into Eq. (14.3) the results in the following equation: 

 

𝑃𝑦 = 𝐸𝐼𝜙 (14.5) 
 

Recall that the curvature is defined as the change in slope along the length of the member, and the slope is the change 

in lateral displacement. Therefore, the curvature is the second derivative of the lateral displacement; noting that the 

member has displaced in the positive y direction but is concave down, ϕ and y have the following relationship: 

 

𝜙 = −
𝑑2𝑦

𝑑𝑥2
 (14.6) 

 

Substituting Eq. (14.6) into Eq. (14.5) and then dividing both sides by EI results in the following differential equation: 

 

𝑃

𝐸𝐼
𝑦 = −

𝑑2𝑦

𝑑𝑥2
 (14.7) 

 

We can solve Eq. (14.7) in the same way that we solved the differential equation for free vibrations in Lecture 7, 

which was by assuming a function for y, and then checking to see that it satisfies the equation. Because Eq. (14.7) 

resembles the differential equation that we saw in Lecture 7, we will assume that y has the form: 

 

𝑦 = 𝐴 sin(𝜔𝑥 + 𝐵) (14.8) 
 

Taking the second derivative of Eq. (14.8) and then substituting everything into Eq. (14.7) results in the following 

requirement for ω:  

𝜔 = √
𝑃

𝐸𝐼
 (14.9) 
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We can learn more about the shape of the buckled member if we make use of the fact that the member is prevented 

from having any lateral displacements at its ends. These are summarized in the following boundary conditions: 

 

𝑦(𝑥 = 0) = 0;  𝑦(𝑥 = 𝐿) = 0 (14.10) 
 

Substituting the first boundary condition into Eq. (14.8) results in the requirement that B = 0: 

 

0 = 𝐴 sin(𝜔 × 0 + 𝐵) → 𝐵 = 0 (14.11) 
 

Using this new information and then substituting the second boundary equation into Eq. (14.8) results in the 

requirement that ωL be an integer multiple of pi (i.e., n = 0, 1, 2, 3, etc.): 

 

0 = 𝐴 sin(𝜔𝐿) → 𝜔𝐿 = 𝑛𝜋 (14.12) 
 

Combining Eq. (14.9) with Eq. (14.12) and isolating for the load carried by the buckled member, P, results in the 

following equation: 

𝑃 =
𝑛2𝜋2𝐸𝐼

𝐿2
 (14.13) 

 

The smallest nonzero value of P requires using n = 1. This corresponds to the Euler load in Eq. (14.2), which is 

reproduced below as Eq. (14.14): 

𝑃𝑒 =
𝜋2𝐸𝐼

𝐿2
(14.14) 

 

Higher Modes of Buckling 

Note that in our equation for P, the compressive force carried by the buckled member, there were numerous values of 

n which were possible. Values of n which are greater than n = 1 correspond to higher modes of buckling, which occur 

when the member buckles into more complex shapes. For the simple member used in this example, n corresponds to 

the number of half cycles that the sinusoidally-shaped member assumes. The shapes corresponding to various values 

of n are shown in Fig. 14.5. 

 

Stability of Members under Compression Loads 

Buckling is an unstable form of equilibrium. Unlike tension for example, where pulling on a member produces a 

restoring force which helps to return the member back to its original shape, a member which is buckling will 

continuously weaken and curve more and more as it is loaded.  
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Fig. 14.5 – Higher modes of buckling and associated critical buckling loads. 

 

Under ideal conditions, members are perfectly straight and will theoretically remain so before suddenly buckling once 

the critical buckling load is reached. Real members however are not perfect and will have a nonzero initial lateral 

deflection at their midspan, Δo because they are not straight. This initial deflection means that they will visibly bend 

before the Euler load is reached. The relationship derived by the British mathematician Richard Southwell suggests 

that that lateral deflection of an imperfect member, Δlat, when subjected to a compression force P is: 

 

∆𝑙𝑎𝑡=
∆𝑜

1 −
𝑃
𝑃𝑐𝑟𝑖𝑡

 (14.15)
 

 

In Eq. (14.15), Pcrit is the critical buckling load, which is equal to the Euler load for members which satisfy the support 

conditions used to derive Pe. The behaviour predicted by Eq. (14.15) is compared with ideal buckling behaviour in 

Fig. 14.6. 

 

 

 

 

 

 

 

 

 
 

Fig. 14.6 – Comparison of compression response for 

perfect (red) and imperfect (blue) members. 

 

Note: The response of ideal members which remain perfectly 

straight before buckling at the Euler load is an example of 

bifurcation behaviour.  

 

 

 

 

 

 

Note: A graphical representation of Southwell’s method can 

be used to determine the critical buckling load of an as-built 

member without subjecting it to forces which approach its 

failure load. This is useful for evaluating the safety of 

structures which are in service and cannot be loaded to 

failure.   
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Lecture 15 – Truss Bridge Design Continued 
Overview 

In this chapter, the process of selecting appropriate members in a steel truss using working stress design is discussed. 

The properties of hollow structural sections (HSS) are described in detail. Although the design of truss members using 

steel HSS are covered in this chapter, the basic concepts are also applicable to the design of trusses using other 

materials (i.e., wood) or alternative types of steel sections. 

 

Design of Members in Tension 

As discussed in Lecture 6, steel behaves in a linear elastic manner for relatively small stresses. Once the stress in the 

material reaches the yield stress, it will yield and elongate substantially, with most of these deformations being non-

recoverable. The steel will be able to resist a higher stress than the yield stress, the ultimate stress, due to the effects 

of strain hardening, before failing shortly after.  

 

Although designing structures using the ultimate strength can lead to material savings, structures must prioritize safety 

over economy. This is because the consequences of exceeding the ultimate stress, which include structural failure and 

a potentially catastrophic loss of life, are not worth the relatively minor savings in the cost of construction. It is for 

this reason that the yield strength is instead used as the design strength of the materials involved. Furthermore, large 

factors of safety are also employed to reduce the likelihood of failure, as discussed in Lecture 8, and guarantee that 

the structure remains in a linear elastic state during its service life.  

 

The stress, σ, in a member with a cross sectional area A when it is carrying a tension force F is: 

 

𝜎 =
𝐹

𝐴
 (15.1) 

 

In design, the maximum allowable stress which may be carried by a member in tension is the yield stress, σy, divided 

by a factor of safety; an appropriate factor of safety for yielding is FOSyield = 2.0. Substituting this into Eq. (15.1) 

results in the following requirement on the cross-sectional area of a member which must carry a tensile force F: 

 

𝐴 ≥ 𝐹𝑂𝑆𝑦𝑖𝑒𝑙𝑑
𝐹

𝜎𝑦
= 2.0

𝐹

𝜎𝑦
 (15.2) 

 

A common value of the yield strength of structural steel products made in Canada is σy = 350 MPa.  

 

Design of Members in Compression 

Members in compression can fail by either crushing or buckling. Crushing failures, which occur in stocky members 

which do not buckle, occur when the stresses reach the compressive strength of the material. For steel, the stress which 

causes yielding in compression is the same as the yield stress in tension, which is 350 MPa. Therefore, Eq. (15.2), 

using a factor of safety of 2.0 for yielding in compression, can also be used to determine the required cross-sectional 

area for members in compression.  

 

  

 

 

 

 

 

 

 

 

 

 

 

Note: Another reason why the yield strength is used instead 

of the ultimate strength is because the significant permanent 

deformations due to yielding are not desirable. Although 

structures which have yielded may still be strong enough to 

carry substantial forces, they will appear unsafe and may not 

be able to fulfill their other non-structural functions. 
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Buckling occurs when the load carried by the member reaches its critical buckling load, Pe. Recall that for a member 

with Young’s Modulus E, second moment of area I and length L, the buckling load is equal to: 

 

𝑃𝑒 =
𝜋2𝐸𝐼

𝐿2
 (15.3) 

 

Buckling is a more dangerous mode of failure than yielding. Some reasons for this are because it generally occurs 

more suddenly than yielding and is associated with instability and a loss of strength once it takes place. Therefore, the 

factor of safety associated with buckling is FOSbuckling = 3.0, which is larger than the corresponding factor of safety 

for yielding due to the above reasons. Reducing the allowable compressive force by taking Pe and dividing it by the 

factor of safety results in the following requirement on the second moment area of a member which must carry a 

compression force F: 

𝐼 ≥ 𝐹𝑂𝑆𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔
𝐹𝐿2

𝜋2𝐸
= 3.0

𝐹𝐿2

𝜋2𝐸
 (15.4) 

 

As noted in earlier chapters, the Young’s modulus of steel is E = 200,000 MPa.  

 

The stress causing failure of a member subjected to compression forces is the smaller of the failure stresses associated 

with yielding and buckling. The yield stress is a property of the material and is independent of its size. On the other 

hand, the Euler buckling stress σe, which is calculated by taking the buckling load Pe and dividing by the cross-

sectional area A, depends on the length of the member, L: 

 

𝜎𝑒 =
𝑃𝑒
𝐴
=
𝜋2𝐸𝐼

𝐴𝐿2
(15.5) 

 

We can simplify Eq. (15.5) by introducing a new term r, which is called the radius of gyration: 

 

𝑟 = √
𝐼

𝐴
 (15.6) 

 

Substituting the definition of r into Eq. (15.5) results in the following representation of the buckling stress: 

 

𝜎𝑒 =
𝜋2𝐸

(𝐿 𝑟⁄ )
2  (15.7) 

 

In Eq. (15.7), L/r is called the slenderness ratio, a nondimensional term which describes the tendency of a member 

to buckle. Members with a large slenderness ratio tend to fail due to buckling, and those with a small slenderness ratio 

tend to fail by crushing.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The radius of gyration is not a directly measurable 

property and is not equal to the radius of a circle. Its physical 

meaning can be deduced by considering that I is the 

geometric property of a cross section which affects its 

flexural stiffness, and A is the geometry property which 

affects its axial stiffness. The radius of gyration is hence a 

ratio of a member’s flexural stiffness to its axial stiffness.   
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Fig. 15.1 plots the failure stress of members in compression as a function of the slenderness ratio of the member. For 

short members with low slenderness ratios, the buckling stress approaches infinite and hence these members instead 

fail at the yield stress of the material. However, as the slenderness ratio increases, the buckling stress decreases rapidly 

which causes very slender members to fail at a fraction of the yield stress of the material. The red curve, which is 

obtained by taking the smaller of the yield stress and the buckling stress, represents the failure stress of the member 

and is often referred to as a failure envelope. The blue curve is obtained in a similar manner as the failure envelope 

but considers the minimum of the allowable yield stress and the allowable buckling stress. This curve is suitable for 

design because it incorporates appropriate factors of safety for the two modes of failure.  

 

 
Fig. 15.1 – Influence of slenderness ratio on the strength of compression members. Values plotted are for steel with 

σy = 350 MPa and E = 200,000 MPa. 

 

Summary of Design Requirements 

When designing the individual members used in a structure, the primary task required of an engineer is to proportion 

the sizes of the members so that they are able to safely resist the applied loads. Once the minimum required values of 

the cross-sectional properties, such as the cross-sectional area A, second moment of area I, and radius of gyration r, 

have been obtained, the structural member is specified from a catalogue of available products.  

 

Eq. (15.2) is appropriate for selecting the required A for both tension and compression members. The minimum 

required I for compression members can be determined by using Eq. (15.4); this check is not required for tension 

members which cannot buckle. Furthermore, modern design codes also limit the slenderness ratio of a member to 

discourage the use of very slender members which are vulnerable to unexpected changes in loading. This requirement 

is shown in Eq. (15.8): 
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Table 15.1 – Design Equations for Tension and Compression Members 

Member Type Cross-Sectional Area, A Second Moment of Area, I Radius of Gyration, r 

Tension Members 

𝐴 ≥ 2.0
𝐹

𝜎𝑦
 

N/A 

𝑟 ≥
𝐿

200
 

Compression Members 𝐼 ≥ 3.0
𝐹𝐿2

𝜋2𝐸
 

 
𝐿

𝑟
≤ 200 (15.8) 

 

A summary of equations used to design tension and members used in truss structures is shown in Table 15.1 

 

Steel Truss Design using Hollow Structural Sections 

Steel is a common building material used in civil construction, and a particularly common family of steel members 

used in steel truss bridges are hollow structural sections (HSS). HSS are hollow steel tubes which are formed by 

rolling sheets of steel to form members which are square, rectangular or circular in cross section. Being hollow, HSS 

members are relatively light, and being made of steel, can be both strong and stiff. HSS are sold by many steel 

fabricators in commonly produced sizes, some of which are shown in Table 15.2 which is reproduced in Appendix B. 

 

Fig. 15.2 shows the cross sections of a square (left) and rectangular (right) HSS, which have the height, width and 

thickness as key geometric properties. Many types of HSS which have the same outside dimensions can be ordered in 

various thicknesses. HSS are typically specified in engineering drawings and specifications using their nominal 

dimensions. For example, an HSS 305x203x13 is a rectangular HSS which is nominally 305 mm tall, 203 mm wide 

and has a nominal wall thickness of 13 mm.  

 

Typically, when designing with HSS, it is common to use one continuous member size for the entire bottom chord of 

a bridge, and one continuous member size for the entire top chord. The web members, which should be smaller than 

the chords to facilitate the process of connecting the members together, can be individually sized to match the 

anticipated forces that they must carry. However, it is advisable to only choose one or two members for the webs to 

reduce the likelihood of errors during construction.  

 

 

 

 

 

 

 

 

 

 

 
Fig. 15.2 – HSS 305x305x13 (left) and HSS 305x203x13 

(right). All dimensions in mm. 

 

 

 

 

 

 

 

 

 

 

Note that the designation of an HSS, which refer to the 

nominal dimension of the section, is different than the size of 

the HSS, which refer to the actual dimensions. In reality, an 

HSS 305x203x13 will have a wall thickness of 12.7 mm, not 

13 mm. 
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Table 15.2 – Table of Standard HSS Properties  
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Lecture 16 – Blowing in the Wind 
Overview 

In addition to loads caused by gravity, which generally act downwards, structures must be designed to resist wind 

loads which typically act laterally. This chapter presents a simple method for determining the loads caused by severe 

windstorms and outlines a procedure for designing cross bracing to safely resist them.  

 

Wind Loads 

A strong wind is capable of producing forces that are large enough to cause structures to collapse, like the trees shown 

in Fig. 16.1 and the bridge over the Firth of Tay shown in Fig. 16.2. The bridge collapsed in 1879 when a train 

attempted to cross over it during winds blowing at speeds of up to 117 km/h, killing all 75 passengers on board. In 

regions of low seismicity, wind loads are usually the most important lateral load which structural engineers must 

consider when designing structures.  

 

When a wind is blowing onto a surface of a body, it applies a force, Fwind, which can be calculated using Newton’s 

drag equation: 

 

𝐹𝑤𝑖𝑛𝑑 =
1

2
𝜌𝑣2𝑐𝐷𝐴 (16.1) 

 

In Eq. (16.1), ρ is the density of the fluid, v is its velocity, A is the frontal area on which the wind acts, and cD is a 

drag coefficient which describes the ability of the wind to travel around the body. cD may take on a range of values, 

being 0.2 for a well-designed sports car, 0.75 for a sphere or cylinder, and 1.5 for boxy objects like a cube or a wall.  

 

A simple design value of the wind pressure, wwind, can be obtained by using the density of air, ρ = 1.2 kg/m3, and 

assuming appropriately conservative values for v and cD, If the maximum wind speed is assumed to be 170 km/h and 

cD is taken as 1.5, the wind pressure is equal to: 

 

𝑤𝑤𝑖𝑛𝑑 =
𝐹𝑤𝑖𝑛𝑑
𝐴

= 2.0 kPa (16.2) 

 

Therefore, an appropriate value for design is wwind = 2.0 kPa of force, acting horizontally on the structure.  

 

Design of Cross Bracing to Resist Wind Loads 

To prevent the main trusses of a bridge from collapsing due to the force of the wind, cross bracing must be provided 

to connect the top chords and bottom chords together. With this bracing, the bridge will then be able to transfer the 

applied wind forces to the supports on the ends, in a similar way that the main trusses support the gravity loads applied 

to the deck and transfer them to the supports. A typical arrangement for the top and bottom braces is shown in Fig. 

16.3.  

 

 

 
Fig. 16.1 – Pine trees broken by a windstorm 

 

 
Fig. 16.2 – Firth of Tay Bridge, 29 December 1879. The 

engineer, Sir Thomas Bouch, was unable to produce the 

wind calculations during the subsequent investigation. 
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Fig. 16.3 – Arrangement of cross bracing on the top (above) and bottom (below) of a truss bridge. 

The bridge has the same geometry as the one analyzed in Lecture 13. 

 

In each of the schematics shown in Fig. 16.3, Pwind is the joint load caused by the wind blowing onto the side of the 

bridge. Because the direction of the wind is not fixed, the cross bracing must be designed to resist loads acting on 

either side. Furthermore, the loads can push towards the bridge, or pull away due to suction effects. This results in 

four possible combinations of loading which must be considered when designing the members.  

 

Determining the forces in the bottom cross bracing follows the same process as the analysis of the main truss for 

gravity loads. First, the reaction forces Ry,l and Ry,r must be determined based on the applied loads. After these loads 

have been determined, the forces in the braces can be obtained by using the Method of Joints or Method of Sections. 

 

Analyzing the top cross bracing using a truss analysis method like the Method of Joints is not immediately possible 

due to the lack of diagonal members which connect the supports to the rest of the braces. These members are omitted 

to allow entry and egress of the bridge. In lieu of these members, the connection is typically stiffened to allow the 

forces in the cross bracing to be transferred to the ground.  

 

 
Fig. 16.4 – Isometric view of a truss railway bridge. Note 

the use of stiff connections at the front to eliminate the need 

for a brace crossing over this region. The open entryway 

stiffened at the corners is called a Portal Frame. 
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Fig. 16.5 – Analysis of the forces in the top braces. 

 

Fig. 16.5 shows a simplified approach to solving for the forces in the top braces. In this schematic, we have assumed 

that the reaction forces provided at the supports can be transferred along the outside members to meet the braces. With 

this assumption, the brace forces can now be determined using the Method of Joints.  

 

Calculating Joint Loads using the Tributary Area 

Although calculating the brace forces once the wind loads have been determined is a straightforward task, obtaining 

the joint loads caused by the wind requires a series of intricate calculations to be done. The joint load Pwind is calculated 

in a similar way as the joint loads caused by gravity, but instead the loads act on the frontal area of the bridge, Afrontal, 

instead of on the deck: 

 

𝑃wind = 𝑤wind𝐴frontal (16.3) 
 

In Eq. (16.3), wwind is typically taken as 2.0 kPa.  

 

When determining the frontal area, the tributary area concept is used in the same way it was used for obtaining the 

gravity loads, meaning that a joint is responsible for carrying the loads applied to the surfaces halfway to each of its 

surrounding neighbours. The frontal area used in Eq. (16.3) is hence the solid area within this tributary zone. 

 

Fig. 16.6 show the elevation view of a truss bridge and illustrates how the wind pressure is distributed to produce 

discrete loads applied to the joints. The frontal area associated with joint A is all of the solid area within Zone A, and 

likewise for joint B. Due to the presence of the handrail in Zone B, the force applied to joint B will greatly exceed 

what joint A must carry.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Moving the reaction force from the support to the top 

bracing requires a carefully designed connection. The design 

of these connections is outside of the scope of CIV102 but 

can pose a serious design challenge in real-life engineering 

practice.  
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Fig. 16.6 – Elevation view of a truss bridge. Joint A is responsible for carrying the loads applied to the solid surfaces 

within Zone A, and joint B is responsible for carrying the loads applied to the solid surfaces in Zone B.  

 

Fig. 16.7 shows the details of Zone A and B in more detail. Each zone has a height of h/2, and a width of s top and sbot 

respectively. The frontal area in Zone A can be approximated using the following equation: 

 

𝐴𝑓𝑟𝑜𝑛𝑡𝑎𝑙 ≅∑𝑏𝑖𝑙𝑖

𝑛

𝑖=1

= 𝑏1𝑙1 + 𝑏2𝑙2 + 𝑏3𝑙3 + 𝑏4𝑙4 (16.4) 

 

In Eq. (16.4), n is the number of members within the zone, bi is the outside dimension of the cross section facing the 

wind, and li is the length of the member within the zone.  

 

For situations involve a handrail, like in Zone B in Fig. 16.7, the frontal area of the handrail is much larger than the 

frontal area of the HSS, which can hence be neglected for simplicity. Although the handrail may consist of closely 

spaced vertical members with gaps in between, the resulting turbulence as the air flows through these narrow spaces 

will increase the drag force applied to the railing. Therefore, the handrail may be approximated as a solid surface, 

resulting in a frontal area of: 

 
𝐴𝑓𝑟𝑜𝑛𝑡𝑎𝑙 ≅ ℎ𝑟𝑎𝑖𝑙𝑠𝑏𝑜𝑡 (16.5) 

 

Note that Eq. (16.4) and (16.5) should be modified when used in situations where the horizontal or vertical spacing of 

the joints is irregular. The governing principle when making these modifications is that each joint is responsible for 

the zone halfway to each of its neighbours.  

 

 

 

 
Fig. 16.7 – Schematics for determining the tributary areas 

in Zone A and Zone B. 
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Lecture 17 – A Bracing Lecture 
Overview 

In this chapter, the process of designing cross braces to laterally support members in compression is presented. 

Compression members typically tend to deform because of imperfect alignment, which can reduce their buckling 

strength if their joints are not adequately restrained from moving. A simple analysis technique is derived to ensure 

that the lateral movements at any joint does not exceed 1% of the attached member’s length.  

 

Stability and Misalignment of Compression Members 

Consider the truss bridge shown in Fig. 17.1, whose top chord is in compression as it supports a substantial gravity 

load applied to the deck. When designing the chord, it was assumed that the member and its joints were perfectly 

aligned so that the compression member buckled between the joints with an effective buckling length equal to the 

spacing between the joints (i.e., L = the joint spacing) when evaluating the buckling force Pcrit.  

 

 
Fig. 17.1 – Design of top chords against buckling using the joint spacing, L. 

 

In reality, these assumptions are generally not true: the members will be slightly misaligned due to the imperfect 

nature of construction, and the stability of the joints will depend on the stiffness of the braces used to connect the 

chords of the truss together. In extreme cases, like truss bridge in Fig. 17.2 which does not contain any diagonal braces 

connecting its top chords together, the compression chords can buckle over the entire length of the bridge at a much 

lower load than originally anticipated.  

 

The bridge shown on the right in Fig. 17.2, which contains diagonal braces and rigid connections at the portal frame, 

avoids this issue by preventing the joints from deforming in the out-of-plane direction. Having this bracing system 

provides stability to the structure and allows us to design the compression members using our original assumption that 

the effective buckling length is the joint spacing. The braces which connect these compression members must therefore 

be sized so that they can provide an adequate restraining force to prevent the chord from buckling at its joints. 

 

 

  

 

 

 

 

 

 

Recall: Gravity loads are applied to the deck, and include 

the weight of the deck itself, the weight of the structural 

components, and the weight of a large crowd of people.  
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Fig. 17.2 – View of a truss bridge from above, showing how cross bracing can restrain the chords from buckling 

over the entire span. 

 

Design Check for Stability 

Fig. 17.3 shows two schematics of a compression member with a length of 2L and subjected to a compression force 

of P. Because the joint at the midspan is not restrained, it buckles and displaces laterally at its midspan by a distance 

Δ. To prevent the system from deforming further, a restraining force, R, is required to pull the displaced joint back to 

its original position; this is shown in the second drawing in the figure.  

 
Fig. 17.3 – Analysis of a compression member as the joint moves out of plane. 

 

The required restraint force to restore the joint back into its original position depends on how much it has displaced, 

i.e., as the deformation Δ increases, R must increase as well. In design, an appropriate value of Δ to use is Δ = 0.01L 

(1% of L). This misalignment, equal to 1% of the of the length of the individual members, is a reasonable upper bound 

of what can be expected given modern construction practices.  

 

Fig. 17.4 shows a free body diagram of half of the situation shown in Fig. 17.3. Because the system is in equilibrium, 

taking moments about the bottom left joint results in the following equation: 

 

𝑃 × ∆ =
𝑅

2
× 𝐿 (17.1) 

 

Substituting the requirement that Δ = 0.01L results in the following requirement for the restraint force: 

 

𝑅 = 0.02𝑃 (17.2) 
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Therefore, to ensure that the compression member is adequately braced for stability, there must be braces attached to 

each of its joints which are able to provide a local restraining force of R = 0.02P.  

 

 
Fig. 17.4 – Free body diagram used to determine the required restraining force, R, if Δ = 0.01L. 

 

Fig. 17.5 shows how the diagonal braces provide the required restraining force as the intermediate joint moves 

laterally. As the joint displaces outwards, the two diagonal braces come into tension and pull the joint back to its 

original position. To maintain vertical equilibrium at the bottom joints, the vertical members must go into 

compression, which in turn stabilizes the top joints by providing the reaction forces shown in Fig. 17.3. The opposite 

occurs if the intermediate joint was to instead displace inwards.  

 

Just like when designing for wind, the braces supporting compression members must also be designed for four possible 

situations because either of the compression chords may buckle towards or away from the centre of the bridge. These 

four situations are illustrated in Fig. 17.6, which shows a portion of the braces connecting the top chords from plan 

view.  

 
Fig. 17.6 – Summary of design cases when designing braces for stability. 

 

It should be emphasized that the stability design described above is a local check to ensure that each joint is adequately 

supported by the braces. This contrasts with a global analysis, which is done when designing for wind for example, 

which involves obtaining the reaction forces and complete member forces for the entire bridge.  

 
Fig. 17.5 – Mechanism by which cross bracing restrains 

joints from buckling outwards. 
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Design Process for Cross Bracing 

The design of the braces on the top and bottom of the bridge to resist wind loads and instability effects can be done 

together once the main trusses have been designed to resist the gravity loads. The braces which connect the bottom 

chord will typically only need to be designed for wind loads because the gravity loads cause them to go into tension. 

This contrasts with the design of the braces on the top of the bridge, which must both resist wind loads and provide 

stability when the gravity loads cause the top chords to carry significant amounts of compression.  

 

To design the top braces, the following steps should be followed:  

 

1. Calculate the wind loads and determine the brace forces. This is a global analysis which involves solving for 

the reaction forces and then obtaining the brace forces by using the Method of Joints or Method of Sections.  

 

2. Calculate the forces in the braces which are required to stabilize the compression chords under gravity loads.  

Using the forces in the chords as obtained under gravity loads, calculate the required restraint force needed to support 

the joints along the top chord from displacing laterally. This is done by performing a series of local analyses, like the 

ones shown in Fig. 17.6, with the goal of calculating the forces in the members directly attached to the displaced joint.  

 

3. Select appropriate HSS sections which can carry the larger of the forces obtained in steps 1 and 2. The braces 

should be designed for both tension and compression because the wind or instability can act in any direction. Typically, 

only one or two HSS sizes are used for the braces to avoid errors during construction and avoid potential supply issues.  

 

The design process for the bottom braces is identical but omits step 2 because the bottom chords will not buckle under 

the tension forces caused by gravity loads.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The compression force in the top chord varies along 

its length. If you find when drawing a schematic like those in 

Fig. 17.6 that the forces in the chords on the two sides are 

not equal, use the larger value to find R to be conservative.  

 

Note: The braces need to be designed for the more severe 

case of wind or instability, but not both at the same time. This 

is because the loads will not occur at the same time. For 

example, during the event of a severe windstorm, it is highly 

unlikely for a large crowd of people to occupying the bridge 

at the same time. High wind loads will generally occur in the 

absence of high gravity loads, and vice-versa.  
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Lecture 18 – Method of Virtual Work 
Overview 

Although determining the forces in a truss bridge structure is a straightforward task, determining the deflection of a 

loaded structure can be an arduous challenge. In this chapter, the Method of Virtual Work is presented, which transforms 

the task of solving displacements from a complex geometric problem to a simple statics problem.  

 

Introduction  

In structural engineering, it is equally important for a structure to have adequate strength and stiffness. The importance 

of strength, which is the ability of a structure to safely carry the expected loads, has been discussed extensively in 

previous chapters. Stiffness on the other hand is a measure of how well a structure can limit its deformations under 

service loads. Excessive deformations can disrupt other functions of the structure and are generally unpleasant if they 

are large enough to be observed by users of the structure.  

 

Determining the deformations of a truss structure when loaded can be done by solving for the forces in the members, 

calculating the corresponding changes in length of all of the members, and then determining the displaced shape using 

these new member lengths. Although this is a feasible procedure to determine the deflections of very simple structures, 

it quickly becomes impractical as the number of members which need to be considered increases.  

 

An alternative means of solving for the displacements uses energy methods. According to the theorem of conservation 

of energy, the work done by the externally applied loads F acting over the external displacements Δ, Wext, must equal 

to the work done by the internal members changing length, Δl, while carrying internal forces P, Wint. In the case where 

m loads are applied to a truss structure with n members, this can be expressed as: 

 

𝑊ext = 𝑊int (18.1) 
 

The work terms in Eq. (18.1) can be expanded further, which results in the following: 

 

∑∫𝐹𝑖𝑑∆𝑖

𝑚

𝑖=1

=∑∫𝑃𝑗𝑑∆𝑙𝑗

𝑛

𝑗=1

 (18.2) 

 

The equivalence of the external work and internal work is the basis of the Method of Virtual Work.  

 

The Method of Virtual Work: Derivation 

To introduce the Method of Virtual work, consider the simple two-member truss which is shown in Fig. 18.1. There is 

a force F applied to the structure which causes joint B to translate horizontally and vertically by ΔBx and ΔBy 

respectively. The two members, member AB and BC, will resist the applied force by carrying internal member forces, 

PAB and PBC respectively, and will stretch or contract by ΔlAB and ΔlBC as a result. The quantity which we would like 

to solve is the vertical displacement of point B, ΔBy.  

 

 

  

 

 

 

 

 

Note: Service loads refer to the loads which the structure 

must carry under normal circumstances. This is different 

from extreme loads which arise from severe windstorms, 

earthquakes, or large crowds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The integrals in Eq. (18.2), which represent the work 

done by the forces acting over displacements, are a 

mathematical representation of the area under a force-

displacement curve. Refer to Lecture 6 for more 

information. 

 

 

 

 

Note: The derivation of the method of virtual work is 

included here for completeness but will not be assessed 

during the course. You will be assessed based on how well 

you are able to apply the method to solve problems.  
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Fig. 18.1 – Real system of forces and displacements. Fig. 18.2 – Virtual system of forces and displacements. 

 

Consider the equivalence of the external work done by the force F as it acts over the displacements at joint B and the 

internal work done by the members as they deformed in response to the applied load. If it is assumed that all of the 

members are linear elastic, then Eq. (18.2) can be rewritten as: 

 

∑
1

2
𝐹𝑖∆𝑖

𝑚

𝑖=1

=∑
1

2
𝑃𝑗∆𝑙𝑗

𝑛

𝑗=1

 (18.3) 

 

Expanding Eq. (18.3) for our simple system and breaking up F into its x- and y- components yields: 

 
1

2
𝐹𝑥∆𝐵𝑥 +

1

2
𝐹𝑦∆𝐵𝑦 =

1

2
𝑃𝐴𝐵∆𝑙𝐴𝐵 +

1

2
𝑃𝐵𝐶∆𝑙𝐵𝐶  (18.4) 

 

The terms on the right side of Eq. (18.4), which contain the internal forces and the changes in lengths of the members, 

can be solved using tools discussed in the previous chapters. However, the left side of our equation contains two 

unknown displacements, ΔBx and ΔBy, which cannot be solved because we only have one equation.  

 

To overcome this issue, we will introduce a virtual system, shown in Fig. 18.2, which is geometrically identical as the 

original system, but only contains a single virtual force, F*, which acts in the same position and direction of our 

displacement of interest, ΔBy. The virtual force causes the system to have virtual member forces, P*AB and P*BC which 

result in virtual member deformations, Δl*AB and Δl*BC, and virtual displacements at joint B, ΔB*x and ΔB*y. Writing 

the work equation for this system, noting that the x-component of F* is equal to zero, results in: 

 
1

2
𝐹∗∆𝐵𝑦

∗ =
1

2
𝑃𝐴𝐵
∗ ∆𝑙𝐴𝐵

∗ +
1

2
𝑃𝐵𝐶
∗ ∆𝑙𝐵𝐶

∗  (18.5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The virtual force F* has an arbitrary magnitude and 

is usually taken as F* = 1 kN. The key concept when 

specifying F* is that F* has the same location and 

orientation as the displacement of interest. F* is 

sometimes called a dummy load.  
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Eq. (18.5) contains the products of virtual forces and virtual displacements, which are unrelated to the real forces and 

real displacements which we are interested in. If we take advantage of the fact that the structure is linear elastic, then 

we can combine our virtual system with our real system, resulting in a hybrid system which has both real and virtual 

forces and real and virtual displacements. This is shown in Fig. 18.3.  

 

 
Fig. 18.3 – Hybrid system containing both real and virtual quantities. 

 

Fig. 18.4 contains four plots which show the force-displacement relationships of the structure and its members due to 

the application of both the real and virtual forces. The top two plots show the relationships between the externally 

applied forces and the displacements of joint B, and the bottom two plots show the relationships between the internal 

member forces and their member deformations. The area underneath the curves represents the work done; the red areas 

correspond to work done by the real forces acting over the real displacements, and the blue areas represent the work 

done by the virtual forces acting over the virtual displacements.  

 

By using the principle of equivalent internal and external work in Eq. (18.1), the total area underneath the top two 

graphs, the external work, must be equal to the total area underneath the bottom two graphs. Furthermore, the red areas 

in the top graphs must equal the red areas in the bottom graphs, due to Eq. (18.4), and the blue areas in the top graphs 

must also equal to the blue areas in the bottom graphs, due to Eq. (18.5).  

 

 

 

 

 

 

 

Note: The net forces, stresses and strains resulting from 

the real load F and virtual force F* acting together is 

simply the sum of the effects caused by each individual 

force. This is called the Superposition Property 

(sometimes referred to as the Superposition Principle) and 

is applicable to any linear elastic system.  
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Work done by external loads 

 
Work done by internal loads 

 
Fig. 18.4 – Load-displacement plots for the structure (top) and individual members (bottom) when subjected to a real 

load F and a virtual load F*. The area underneath each curve is equal to the work done. 

 

Because the total areas, as well as the red and blue areas, must equal, it can also be concluded that the area of the purple 

regions, which are the product of a virtual force and a real displacement, must equal as well. These areas represent the 

virtual work done by the virtual forces, F*, P*AB and P*CB acting over the real displacements, ΔBy, ΔlAB and ΔlBC. 

Expressing this equivalence mathematically results in the following equation: 

 
𝐹∗∆𝐵𝑦 = 𝑃𝐴𝐵

∗ ∆𝑙𝐴𝐵 + 𝑃𝐵𝐶
∗ ∆𝑙𝐵𝐶  (18.5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The terms in Eq. (18.5) do not have a coefficient of 

½ because they represent the rectangular areas under the 

load-displacement relationships.  
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In Eq. (18.5), there is now only one unknown displacement, ΔBy, which can be solved once the other terms are found 

from statics and Hooke’s law. The advantage of using the Method of Virtual work is that by using a virtual system which 

contains one load, we are always able to obtain single equation with one unknown displacement, regardless of the size 

of the structure and complexity of the real loads. Therefore, Eq. (18.5) can be generalized for a system of arbitrary 

complexity to be:  

𝐹∗∆=∑𝑃𝑖
∗∆𝑙𝑖

𝑛

𝑖=1

 (18.6) 

 

Where the variables in Eq. (18.6) are defined as follows: 

• Δ is a real joint displacement of interest. 

• F* is a virtual load of arbitrary value (usually taken as 1 kN) applied to the structure which has the same 

location and direction as Δ. 

• P*i are the virtual member forces resulting from the virtual force F*. 

• Δli are the real member deformations caused by the real forces in the system. 

• n is the total number of members in the truss structure.  

 

The Method of Virtual Work: Summary and Example 

The basic procedure to use the method of virtual work is shown below: 

1. Solve for all of the member forces, Pi, due to the real loads using any analysis method. 

2. Using the member properties and the real member forces, calculate the real member deformations Δli. 

3. Identify the displacement of interest, Δ. 

4. Create a separate virtual system with a single virtual load, F*, which has the same location and direction as Δ.  

5. Solve for the virtual member forces, P*I. 

6. Use Eq. (18.6) and solve for Δ.  

 

To illustrate this process, consider the truss bridge shown below in Fig. 18.5 whose member forces are the result of the 

real applied loads.  

 
Fig. 18.5 – Real member forces. Note that each horizontal member is 3.75 m long and each  

diagonal member is 3.29 m long. 

 

Note: When using Eq. (18.6), the product of a force and 

displacement will be in Joules if the force is in kN and the 

displacement is in mm. Furthermore, the sign of the virtual 

work is important, as a compressive force acting over a 

tensile deformation produces negative work as does an 

upwards external force acting over a downwards 

displacement (and vice versa).  
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If the deflection of the bridge at the midspan is required, a separate virtual system consisting of a single point load 

applied downwards at the centre of the bridge will be used. This virtual system, including the resulting virtual member 

forces, is shown in Fig. 18.6.  

 
Fig. 18.6 – Virtual system of forces caused by a 1 kN load at the midspan. 

 

Performing the calculations when applying Eq. (18.6) to a large system is commonly done using a large table, like the 

one shown in Fig. 18.7. The column on the far right, which contains the virtual work, is the product of the calculated 

member deformations, Δ, and the virtual member forces P*. By summing over the sixteen members in the table and 

multiplying by two (to account for the work done by the sixteen members on the other side of the bridge), the total 

internal work done was found to be 68.7 J. Equating this value to the external work and dividing by the 1 kN virtual 

load results in a calculated deflection of 68.7 mm downwards.  
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Fig. 18.7 – Summary of calculations to obtain the midspan deflection of a truss bridge. 
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Lecture 19 – Where Have All the Soldiers Gone?  
Overview 

Several types of loading, such as a moving crowd of people, a windstorm, or an earthquake, apply dynamic loads to 

structures. Dynamic loads, unlike static loads, vary in time, and may produce resonant effects which can magnify the 

stresses and deflections experienced by the structure. In this chapter, a simple method to consider dynamic effects in 

linear elastic structures is introduced.  

 

Free Vibration  

As noted in Lecture 7, the behaviour of a simple spring-mass system is governed by the following differential equation: 

 

𝑚
𝑑2𝑥(𝑡)

𝑑𝑡2
+ 𝑘𝑥(𝑡) = 0 (19.1) 

 

Where x(t) is a time-varying function describing the displacement of the mass, m is the mass, and k is the axial 

stiffness of the spring. Solving Eq. (19.1) for a system which vibrates vertically results in a sinusoidal function with 

amplitude A, natural frequency ωn and phase shift ϕ which oscillates around the static displacement of the mass under 

the force of gravity, Δo: 

𝑥(𝑡) = 𝐴 sin(𝜔𝑛𝑡 + 𝜙) + ∆𝑜  (19.2) 

 

The response described by Eq. (19.2) is shown in Fig. (19.1). Note that in this idealized system, there is no loss of 

energy, and the mass will continue to oscillate until it is interrupted by an external action.  

 

 
Fig. 19.1 – Undamped free vibration. 

 

 
Fig. 19.1 – Collapse of the Angers Bridge in France in 

1850. The bridge collapsed as a battalion of soldiers was 

marching across, leading to 226 deaths. 

 

Note: A system undergoing free vibration is sometimes 

referred to as a Simple Harmonic Oscillator. 
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Fig. 19.2 – Damped free vibration. 

Damped Free Vibrations 

In reality, vibrating systems will eventually come to a rest due to energy being dissipated by friction or other effects. 

This gradual loss of energy in a vibrating system is caused by damping, which can be an engineered feature or an 

inherent property of the system. The damping in a system is quantified by the damping ratio, β, which is the ratio 

between the provided damping properties of the system and the minimum amount of damping needed to prevent the 

system from oscillating.  

 

The differential equation for freely vibrating systems which have damping is a slightly modified version of Eq. (19.1): 

 

𝑚
𝑑2𝑥(𝑡)

𝑑𝑡2
+ 2𝛽√𝑚𝑘

𝑑𝑥(𝑡)

𝑑𝑡
+ 𝑘𝑥(𝑡) = 0 (19.3) 

 

The solution to this differential equation is a sinusoidal function like the solution to Eq. (19.3), but has an amplitude 

which decays to zero exponentially: 

 

𝑥(𝑡) = 𝐴𝑒−𝛽𝜔𝑛𝑡 sin(𝜔𝑑𝑡 + 𝜙) + ∆𝑜 (19.4) 
 

In Eq. (19.4), ωd is the damped frequency which has units of rad/s. It is related to the natural frequency, ωn, by the 

following equation: 

 

𝜔𝑑 = 𝜔𝑛√1 − 𝛽
2 (19.5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: In civil structures, typical values of β range from 0 to 

0.05 (5%). Mechanical systems, like vehicles or other 

equipment, may have damping ratios which are 1.0 or 

greater.  

 

Note: The derivation of the differential equation and its 

solution are beyond the scope of CIV102. This material will 

be covered in future physics and dynamics courses.  
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In civil structures, the value of β is usually very low, resulting in ωd being essentially the same as ωn. The response 

described by Eq. (19.4) is shown in Fig. (19.2), where it can be seen that the amplitude of vibration gradually dies out 

and the mass eventually settles at x = Δo.   

 

Forced Oscillation  

In the previous scenarios, the spring-mass system was freely vibrating without the influence of an externally applied 

dynamic load. In reality, structures may be subjected to dynamic loading due to the movement of people crossing over 

a bridge or the vibrations caused by an earthquake. The simplest form of dynamic loading is when the system is 

subjected to harmonic or sinusoidal load with amplitude Fo and loading frequency ω in rad/sec (or f in cycles per 

second): 

𝐹(𝑡) = 𝐹𝑜 sin𝜔𝑡  (19.6) 
 

Substituting this loading into the dynamic equilibrium equation for a damped oscillator results in the following 

differential equation: 

 

𝑚
𝑑2𝑥(𝑡)

𝑑𝑡2
+ 2𝛽√𝑚𝑘

𝑑𝑥(𝑡)

𝑑𝑡
+ 𝑘𝑥(𝑡) = 𝐹𝑜 sin𝜔𝑡  (19.7) 

 

The complete solution to Eq. (19.7) is complex and beyond the scope of CIV102. It is composed of two parts: a 

transient component, which describes the behaviour shortly after the loading is first applied, and a steady state 

component, which describes the response of the system after it has settled into a rhythmic pattern. The steady state 

solution, which is particularly relevant for design, is shown below:  

 

𝑥(𝑡) = 𝐷𝐴𝐹 ×
𝐹𝑜
𝑘
sin(𝜔𝑡 + 𝜙) + ∆𝑜 (19.8) 

 

In Eq. (19.8), the DAF is a Dynamic Amplification Factor, which is calculated as: 

 

𝐷𝐴𝐹 =
1

√(1 − (
𝑓
𝑓𝑛
)
2

)

2

+ (
2𝛽𝑓
𝑓𝑛
)
2

 (19.9)

 

 

The response of a vibrating system when subjected to time-varying loads is strongly influenced by the ratio of the 

driving frequency, f, and the natural frequency of the system, fn, as it influences both the frequency of the resulting 

displacement and the amplitude of the response through the DAF. To illustrate this, Fig. 19.3 shows the response of a 

system when subjected to the same load but at different frequencies. The plot on the left shows a minor reduction in 

amplitude for a driving frequency which is much higher than the natural frequency, while the plot on the right shows 

a major increase in amplitude when the driving frequency is about half of the natural frequency.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIV102H1F CIV102 Course Notes September 2021 

        

 

83 

 

 

  

Fig. 19.3 – Forced oscillation for f/fn = 2.5 (left) and f/fn = 0.5 (right). Note the influence of the driving frequency on 

the amplitude of vibration. 

 

A plot showing the influence of f/fn on the Dynamic Amplification Factor is shown in Fig. 19.4. The first thing which 

should be noted is that the highest value of the DAF is when the driving frequency is approximately equal to the 

natural frequency – this is commonly noted as resonance. The second observation is that increasing the amount of 

damping in the system tends to reduce the amplification, especially the peak value at resonance. Finally, the DAF is 

equal to 1 when f/fn is equal to zero, and gradually becomes 0 when the ratio f/fn becomes large.  

 

Designing for Dynamic Effects 

Although calculating the complete response of a structure under dynamic loads is necessary in certain situations, in 

most cases it is sufficient to only check the if maximum stresses which result do not cause the structure to fail due to 

buckling or yielding. This can be done by calculating the effective static loading which produces the same effect on 

the structure as the dynamic loads.  

 

Consider a set of dynamic loads, wtotal, which has the following form: 

 
𝑤total = 𝑤stationary +𝑤𝑜 sin(𝜔𝑡) (19.10) 

 

In Eq. (19.10), wstationary refers to the component of the loading which does not vary in time, like the dead load of the 

structure and the weight of the people as they stand on the structure. The amplitude of the loading is wo, which could 

represent the impact loading on the bridge due to the crowd of people walking around, and the frequency of the impact 

loading is ω rad/sec (or f = ω/2π cycles/sec). Sample values of these terms for a single person as they walk are shown 

in Fig. 19.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: w may be an area loading in kPa, a line load in kN/m, 

or a collection of joint loads in kN.  
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Fig. 19.4 – Influence of f/fn on the DAF for various values of β. 

 

Using Eq. (19.8), the equivalent static load, weq, is equal to the stationary component of the loading plus an amplified 

dynamic component. The amplified dynamic component is obtained by taking the amplitude of loading, wo, and 

multiplying it by the Dynamic Amplification Factor to consider the interaction between the frequency of loading and 

the natural frequency, which results in the following: 

 
𝑤𝑒𝑞 = 𝑤stationary + 𝐷𝐴𝐹 × 𝑤𝑜 (19.11) 

 

Evaluating the DAF is a straightforward process once the damping, β, and the natural frequency of the structure, fn 

are known. Two simple equations for calculating the natural frequency for truss or beam structures are shown below 

in Table 19.1. Once the equivalent static load has been obtained, then the member forces and stresses can be checked. 

 

Table 19.1 – Simple expressions for calculating fn for truss or beam structures 

 Point Load at Midspan Uniformly Distributed Load 

Schematic 

  

Natural Frequency 

(Hz) 
𝑓𝑛 =

15.76

√∆𝑜
 𝑓𝑛 =

17.76

√∆𝑜
 

** Δo is the midspan deflection under wstationary in mm. 
 

 

 

 
Fig. 19.5 – Time-varying loads caused by a person walking. 

The stationary component of the load is 0.645 kN with an 

amplitude of approximately 0.25 kN, occurring at a 

frequency of approximately 2 hz. 

 

 

 

 

 

 

 

 

 

 

 

 

Note: When designing a pedestrian bridge, the frequency of 

loading caused by people walking is typically assumed to be 

2 Hz. Therefore, unless the bridge contains components 

which can provide significant amounts of damping, having a 

natural frequency which is close to 2 Hz will lead to large 

amounts of amplification and may cause the bridge to 

collapse.  
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Lecture 20 – Bending of Beams – Navier’s Equation – 1826 
Overview 

In this chapter, the derivation of Navier’s equation for calculating bending stresses in a beam is presented. Relevant 

section properties are discussed, and the table of standard steel wide flange sections is explained.  

 

Derivation of Navier’s Equation 

As previously discussed in Lecture 10, when a member is subjected to pure bending by applying a moment to its two 

ends, it curves to form the arc of a circle. If vertical lines were drawn on the member which are perpendicular to its 

longitudinal axis, these lines would remain straight as the member curves and point towards a common point. The 

assumption that those vertical lines – also referred to as plane sections – stay straight is known as the plane sections 

remain plane assumption. In Lecture 10, we concluded that this assumption results in the following equation for the 

longitudinal strain in the member, ε, which varies linearly over the height of the member:  

 

𝜀(𝑦) = 𝜙𝑦 (20.1) 
 

In Eq. (20.1), ϕ is the curvature in rad/mm and y is the vertical distance from the location of interest and the neutral 

axis of the member. The curvature is a measure of how curved a member is, being defined as the change in the 

member’s slope per unit length, and the neutral axis is the location on the beam which does not experience any change 

in length as the member bends. These terms are defined in Fig. 20.2. 

 

For a beam made from a linear elastic material, the stress will be related to the strain by the Young’s modulus, E. 

Applying Hooke’s law to Eq. (20.1) results in the following equation for the stress, which also varies linearly over the 

height:  

𝜎(𝑦) = 𝐸𝜙𝑦 (20.2) 
 

Consider a differentially small area of the cross section, dA, which is located a distance y away from the neutral axis. 

The stress which it is carrying, σ(y), will result in a differential force dF(y) acting through its centroid, which is 

calculated as:  

 

𝑑𝐹(𝑦) = 𝜎(𝑦)𝑑𝐴 (20.3) 
 

This force will also produce a moment about the neutral axis, dM(y): 

 

𝑑𝑀(𝑦) = 𝑦𝑑𝐹(𝑦) = 𝑦𝜎(𝑦)𝑑𝐴 (20.4) 
 

Eq. (20.3) and (20.4) can be written in terms of the curvature and Young’s modulus by using Eq. (20.2), which results 

in the following: 

𝑑𝐹(𝑦) = 𝐸𝜙𝑦𝑑𝐴 (20.5) 
 

𝑑𝑀(𝑦) = 𝐸𝜙𝑦2𝑑𝐴 (20.6) 
 

 

 
 

Fig. 20.1 – Bust of Claude-Louis Navier, who made many 

important contributions to the fields of elasticity and 

structural mechanics.  

 

 
Fig. 20.2 – Figure illustrating Robert Hooke’s 1678 

hypothesis that when members are subjected to pure bending, 

“Plane Sections Remain Plane”. Reproduced from Fig. 10.1. 

CIV102H1F CIV102 Course Notes September 2021 

        

 

86 

 

Integrating dF over the cross-sectional area produces the axial force, N, which is carried by the member. When 

subjected to pure bending, the axial force will be equal to zero, which results in the following equation: 

 

𝑁 = ∫ 𝐸𝜙𝑦𝑑𝐴
𝐴

= 0 (20.7) 

 

In Eq. (20.7), the ϕ is a property of the member and E is a constant related to the material; if the member is 

homogeneous, neither of these quantities will vary over the cross section, and hence they can be removed from the 

integral. The resulting equation governs the location of the neutral axis when the member is subjected to pure bending, 

requiring that the first moment of area taken about the neutral, or centroidal, axis of the member equals zero. 

 

0 = ∫ 𝑦𝑑𝐴
𝐴

 (20.8) 

 

If we integrate dM in Eq. (20.6) over the cross-sectional area, we will obtain the bending moment which is carried by 

the member, M: 

 

𝑀 = ∫ 𝐸𝜙𝑦2𝑑𝐴
𝐴

 (20.9) 

 

We can evaluate Eq. (20.9) by first removing E and ϕ from the equation like we did to obtain Eq. (20.8). The resulting 

equation, which we derived in Lecture 10, contains an integral term, the second moment of area of the cross section, 

which is abbreviated as I: 

𝑀 = 𝐸𝜙∫ 𝑦2𝑑𝐴
𝐴

= 𝐸𝐼𝜙 (20.10) 

 

Eq. (20.10) illustrates the fundamental relationship between the bending moment carried by a member, M, and the 

curvature, ϕ. Combining Eq. (20.10) with Eq. (20.2) results in another important equation, which is the relationship 

between the moment and the flexural stresses in the member:  

 

𝜎(𝑦) =
𝑀𝑦

𝐼
 (20.11) 

 

Eq. (20.11) is called Navier’s Equation, which allows the flexural stresses in a member with second moment of area, 

I, and carrying a bending moment, M, to be calculated. The resulting distribution of flexural stresses caused by 

bending moments is shown in Fig. 20.3, and a summary of the derivation is shown in Fig. 20.4.  

 

 
 

Fig. 20.3 – Distribution of flexural stresses caused by 

bending moments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The relationship M = EIϕ was previously derived in 

Lecture 10.  
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Fig. 20.4 – Summary of how the bending moment carried by a member is determined if the distribution of strains is 

known from the curvature. Reproduced from Fig. 10.3. 

 

Steel Wide Flange Members 

A common type of member used in beams and columns in structures is called a wide flange section. Wide flange 

sections are commonly used in members which bend, like in beams, because their shape allows them to carry bending 

moments very efficiently. The reason for this is because most of their area is concentrated in the flanges, which are 

located far away from the centroidal axis, which is located at mid-height. Because the second moment of area is 

calculated by multiplying the area by the square of the distance from the centroidal axis, moving the area away from 

the neutral axis allows their contribution to I to be maximized.  

 

Navier’s equation states that the bending stresses vary linearly over the height of the member and are equal to zero at 

the location of the neutral axis. Because the maximum tensile and compressive stresses occur at the extremities of the 

member, it is often convenient to simply calculate the stresses on the top and bottom of the beam only. If we define 

ytop and ybot as the vertical distance from the neutral axis to the top and bottom of the member respectively, then the 

largest flexural stresses can be found using the following equations:  

 

𝜎𝑚𝑎𝑥,𝑡𝑜𝑝 =
𝑀𝑦𝑡𝑜𝑝

𝐼
=

𝑀

𝑆𝑡𝑜𝑝
 (20.12) 

 

𝜎𝑚𝑎𝑥,𝑏𝑜𝑡 =
𝑀𝑦𝑏𝑜𝑡
𝐼

=
𝑀

𝑆𝑏𝑜𝑡
 (20.13) 

 

In Eq. (20.12) and (20.13), S is called the section modulus and allows the largest flexural stresses at the top and 

bottom of the member to be calculated in a concise manner. For members having a horizontal axis of symmetry, Stop 

and Sbot are the same.  

 

Tables 20.1 and 20.2 show the section properties for common types of steel wide-flange sections and sawn timber 

sections respectively. The relevant properties for bending, I, S and the radius of gyration r, are specified for both the 

strong axis (x-x) and weak axis (y-y). The strong axis of bending, which refers to the orientation when the flanges of 

an I-beam are parallel to the centroidal axis, or when the taller dimension for a timber section is the height, typically 

has substantially higher values of I, S and r compared to when the member is oriented along its weak axis.  

 

 
Fig. 20.5 – Steel wide flange beam cross section 

 

Note: Wide-flange sections are often called I-beams when 

used as beams in buildings and bridges. When inserted into 

the ground to support structures built above, they are 

sometimes called H-piles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Recall that the radius of gyration is defined as: 

 

𝑟 = √
𝐼

𝐴
 

CIV102H1F CIV102 Course Notes September 2021 

        

 

88 

 

Table 20.1 – Steel Wide Flange Beam Table 

 
 

 

Note: The Torsion Constant will not be used in CIV102. The 

Shear Depth will be discussed when shear stresses are 

introduced in Lecture 25.  
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Table 20.2 – Sawn Timber Section Table 
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Lecture 21 – Calculation of Flexural Stresses 
Overview 

In this chapter, methods used to analyze the bending behaviour of more complex shapes are introduced. For these 

members, Navier’s equation is still capable of determining the flexural stresses, but the location of the centroid and 

the second moment of area must be determined first. 

 

Calculation of the Centroidal Axis 

The centroidal axis, or neutral axis, is a key geometric property of a member when subjected to bending moments 

because other properties, like the second moment of area I, or the section modulus S, are calculated based on its 

location. For this reason, locating the centroidal axis is typically the first task done when approaching a bending 

problem. Recall from Lecture 20 that if the variable y is defined as the vertical distance between a point on the cross 

section and the neutral axis, then the following is true for members subjected to pure bending and no axial force:  

 

0 = ∫ 𝑦𝑑𝐴
𝐴

 (21.1) 

 

When performing calculations, we typically do not evaluate this integral analytically. A more convenient procedure 

is to instead break up the cross section into various simple shapes, and replace the integral with an algebraic sum: 

 

0 = ∫ 𝑦𝑑𝐴
𝐴

=∑𝑦𝑖𝐴𝑖

𝑛

𝑖=1

 (21.2) 

 

In Eq. (21.2), the cross section has been broken up into n discrete area components, Ai, and yi is the vertical distance 

from the local centroid of the area component and the centroidal axis of the overall cross section. This is shown in 

Fig. 21.1.  

 

Although Eq. (21.2) can be used to verify if the location of the centroidal axis has been correctly determined, it is less 

useful for actually determining where that axis is. The equation can be repurposed to solve for the location of the 

centroidal axis relative to the base of the cross section, 𝒚̅, using the following coordinate transformation: 

 
𝑦𝑖 = 𝑦̅ − 𝑦𝑖,𝑏 (21.3) 

 

In Eq. (21.3), yi,b is the vertical distance between the base of the cross section and the centroid of the area of interest. 

These various definitions of y are shown in Fig. 21.2. Substituting Eq. (21.3) into Eq. (21.2) results in the following: 

 

0 =∑(𝑦̅ − 𝑦𝑖,𝑏)𝐴𝑖

𝑛

𝑖=1

 (21.4) 

 

 

 
Fig. 21.1 – Definitions of Ai and yi for evaluating the first 

moment of area using Eq. (21.2). 

 

 

 

 

 

 

 

Note: If yi is the distance from the centroid of the area 

component Ai to the centroidal axis of the whole cross 

section, then the summation term is an exact representation 

of the integral equation in Eq. (21.1). 
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Fig. 21.2 – Definitions of terms used to calculate the location of the centroidal axis using Eq. (21.6). 

 

Expanding the term in brackets and rearranging produces the following result: 

 

∑𝑦̅𝐴𝑖

𝑛

𝑖=1

=∑𝑦𝑖,𝑏𝐴𝑖

𝑛

𝑖=1

 (21.5) 

 

Finally, by recognizing that 𝒚̅ is a constant, we can remove it from the summation term on the left-hand side of the 

equation, giving us a direct equation to obtain the location of the centroidal axis: 

 

𝑦̅ =
∑ 𝑦𝑖,𝑏𝐴𝑖
𝑛
𝑖=1

∑ 𝐴𝑖
𝑛
𝑖=1

=
1

𝐴
∑𝑦𝑖,𝑏𝐴𝑖

𝑛

𝑖=1

 (21.6) 

 

In Eq. (21.6), A is the total area of the cross section. An example of using Eq. (21.6) to obtain the centroidal axis of 

the shape shown in Fig. 21.2 is shown below: 

 

𝑦̅ =
𝑦1,𝑏𝐴1 + 𝑦2,𝑏𝐴2

𝐴1 + 𝐴2
 (21.7) 

 

Calculating I for Complex Shapes: Parallel Axis Theorem 

The second moment of area, I, is defined by Eq. (21.8) shown below, where y is the vertical distance measured from 

the centroidal axis of the cross section, and A is the area of the cross section: 

 

𝐼 = ∫ 𝑦2𝑑𝐴
𝐴

 (21.8) 
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Fig. 21.3 – Schematic of a body rotating around an axis which is not its own local centroidal axis. 

 

When calculating I for simple shapes, such as a rectangle or circle, Eq. (21.8) can be explicitly evaluated, resulting in 

the simple equations shown in Table 21.1. However, structural members often assume more complex shapes whose 

values of I cannot be easily determined by using Eq. (21.8) directly.  

 

A convenient way of calculating I for more complex geometries is to first break up the cross section into n smaller 

components and determine their inertia about the global centroidal axis, Ii. The value of I of the cross section is then 

the sum of these individual components: 

 

𝐼 = ∑𝐼𝑖

𝑛

𝑖=1

 (21.9) 

 

When evaluating Eq. (21.9), the equations for Io of rectangles and circles in Table 21.1 cannot be used directly because 

they are the second moments of area about the local centroidal axes of the shapes. This is different from Ii, which are 

the second moments of area about the global centroidal axis of the cross section. If the local centroid of the 

subcomponent area, Ai is a distance di from the axis of rotation like in the situation shown in Fig. 21.3, then Eq. (21.8) 

can be re-written as:  

𝐼𝑖 = ∫ (𝑦 + 𝑑𝑖)
2𝑑𝐴

𝐴𝑖

 (21.10) 

 

Expanding the terms in brackets results in the following: 

 

𝐼𝑖 = ∫ 𝑦2 + 2𝑑𝑖𝑦 + 𝑑𝑖
2𝑑𝐴

𝐴𝑖

= ∫ 𝑦2𝑑𝐴
𝐴𝑖

+∫ 2𝑑𝑖𝑦𝑑𝐴
𝐴𝑖

+∫ 𝑑2𝑑𝐴
𝐴𝑖

 (21.11) 

 

In Eq. (21.11), the first integral term is the second moment of area of the component if interest about its local centroidal 

axis, which we will define as Io,i. For the second and third integrals, the distance di is not a function of the area and 

Table 21.1 – Equations for Io for simple shapes 

 Rectangle Circle 

Shape 

  

Io 𝐼𝑜 =
𝑏ℎ3

12
 𝐼𝑜 =

𝜋𝑑4

64
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CIV102H1F CIV102 Course Notes September 2021 

        

 

93 

 

can hence be moved outside of the integrals. The second term will then equal to zero, due to Eq. (21.1), which results 

in the following equation: 

 

𝐼𝑖 = 𝐼𝑜,1 + 𝐴𝑖𝑑𝑖
2 (21.12) 

 

Eq. (21.12) is called the Parallel Axis Theorem and allows the second moment of area of a shape to be calculated 

about an axis of rotation which is parallel to its local centroidal axis. If the Parallel Axis Theorem is applied to each 

of the n subcomponents of the cross section, the second moment of area of the whole section can be calculated as:  

 

𝐼 =∑𝐼𝑖

𝑛

𝑖=1

=∑(𝐼𝑜,𝑖 + 𝐴𝑖𝑑𝑖
2

𝑛

𝑖=1

) (21.13) 

 

Fig. 21.4 shows an area as it rotates about an axis which is not aligned with its local centroidal axis. The total 

movement involves (1) its translation around the axis of rotation along a circular path, and (2) its rotation about its 

own centroid. Its total inertia is therefore the sum of its inertia against local rotation, Io,i, and its resistance to being 

translated around the global axis, which is represented by the Aidi
2 term.  

 

 
Fig. 21.4 – Illustration of the various displacements associated with the terms in the Parallel Axis Theorem. 

 

Calculating I for Members with a Horizontal Axis of Symmetry 

Many common structural shapes, like the hollow tube and I-beam shown in Fig. 21.5, have a horizontal axis of 

symmetry. This can be used to calculate I in a more convenient manner than using Eq. (21.13) by taking advantage of 

the fact that the Ii terms in Eq. (21.9) may be positive or negative. This is illustrated for the hollow tube in Fig. 21.5, 

where I is equal to second moment area of a solid rectangle defined by its outside dimensions minus the second 

moment of area of a solid rectangle defined by its inside dimensions. Likewise, for the I-beam, I can be easily found 

by subtracting the second moment of area of the inner rectangles from the second moment of area of a solid rectangle 

defined by the overall height and flange width.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Directly adding and subtracting components is only 

possible if they share a common centroidal axis. If a 

component which is being added or subtracted has a 

different centroidal axis, the Parallel Axis Theorem must be 

applied.  
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𝐼 = 𝐼𝑜𝑢𝑡 − 𝐼𝑖𝑛 

 

Shape Iout Iin 

I beam 𝐼𝑜𝑢𝑡 =
𝑏𝑓𝑑

3

12
 𝐼𝑖𝑛 =

(𝑏𝑓 − 𝑏𝑤)(𝑑 − 2𝑡𝑓)
3

12
 

Hollow tube 𝐼𝑜𝑢𝑡 =
𝑏𝑜𝑢𝑡ℎ𝑜𝑢𝑡

3

12
 𝐼𝑖𝑛 =

(𝑏𝑜𝑢𝑡 − 2𝑡)(ℎ𝑜𝑢𝑡 − 2𝑡)
3

12
 

Fig. 21.5 – Calculation of I for I beams and hollow sections by using horizontal symmetry. 
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Summary 

When approaching a problem involving flexure, the location of the centroidal axis, 𝒚̅, and the second moment of area, 

I, must be determined in order to calculate other relevant parameters like the stresses, strains and curvature. The 

suggested procedure is as follows: 

 

i. Break up the cross section in to simple shapes with area Ai and whose local centroids are a distance yi,b from 

the bottom of the member.  

ii. Determine the location of the centroidal axis relative to the bottom of the member, 𝒚̅, using Eq. (21.6), which 

is reproduced below: 

 

𝑦̅ =
1

𝐴
∑𝑦𝑖,𝑏𝐴𝑖

𝑛

𝑖=1

  

 

iii. Calculate the distances between the local centroids of the component areas, and the centroidal axis of the 

global cross section, di.  

iv. Using the Parallel Axis Theorem, calculate the second moment of area, I, using Eq. (21.13), which is 

reproduced below: 

𝐼 = ∑𝐼𝑜,𝑖 + 𝐴𝑖𝑑𝑖
2

𝑛

𝑖=1
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Lecture 22 – Shear Force Diagrams and Bending Moment Diagrams 
Overview: 

Having introduced the equations which allow the flexural stresses to be calculated if the bending moment carried by 

the section is known, the concept of stress resultants is presented in this chapter. The relevant methods for calculating 

the axial load, shear force, and bending moment diagrams for loaded members is presented. 

 

Stress Resultants  

Consider the simply supported beam shown in Fig. 22.1 which is carrying a variety of horizontal and vertical loads 

and transmitting them to the supports. As we saw earlier in the course where a wire transmitted a tension force by 

carrying internal stresses, this member will also be carrying substantial internal forces. These internal forces, which 

are called stress resultants, can be found by drawing a free body diagram which cuts the member through a point of 

interest.  

 
Fig. 22.1 – Simply supported beam subjected to arbitrary loading conditions. 

 

Fig. 22.2 shows a free body diagram of a portion of the larger beam which has been cut at a distance x away from the 

left support. In order to satisfy horizontal, vertical, and rotational equilibrium, it must carry internal horizontal and 

vertical forces, as well as a moment at the location of the cut. The horizontal force which is parallel to its longitudinal 

axis is called the axial load, N, the vertical force which is perpendicular to the longitudinal axis is called the shear 

force, V, and the moment is called the bending moment, M.  

 
Fig. 22.2 – Section cut of member, revealing stress resultants N, V and M. 

  

 

 

 

 

 

Note: The procedure of cutting through the member to 

determine the stress resultants is analogous to using the 

Method of Sections to determine the member forces in a 

truss.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The shear force is obtained by integrating the shear 

stresses carried by the member. Shear stresses will be 

discussed in more detail in Lecture 25.  
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Applying the equilibrium equations to the free body diagrams allows these stress resultants to be directly calculated 

in terms of the applied loads and the reaction forces. If the free body diagram in Fig. 22.2 is valid from x = 0 until just 

before the first downwards point load from the left, then the stress resultants can be calculated to be:  

 

∑𝐹𝑥 = 0 → 𝑁 = 𝑅𝑥,𝐿 (22.1) 

 

∑𝐹𝑦 = 0 → 𝑉 = 𝑅𝑦,𝐿 − 𝑤𝑥 (22.2) 

 

∑𝑀𝑜 = 0 → 𝑀 = 𝑅𝑦,𝐿𝑥 − (𝑤𝑥) (
1

2
𝑥) (22.3) 

 

As seen from Eqs. (22.1) to (22.3), the stress resultants generally change along the length of the member, based on the 

loading. In structural engineering, we typically use diagrams to show the change in the axial load, shear force and 

bending moment along the member instead of using mathematical representations like in the equations above.  

 

As noted in earlier lectures, the stresses carried by the material are related to the stress resultants; knowing how the 

values of N, V and M vary along the entire member is necessary to determine when it will fail or to design it to safely 

carry the applied loads.   

 

Shear Force Diagrams 

The shear force diagram represents the net vertical force which is carried by a horizontal member at a given location 

and can be obtained once the reaction forces are known. The shear force is related to the vertical loads applied to the 

structure, w(x) by the following relationship: 

 

𝑤(𝑥) =
𝑑

𝑑𝑥
𝑉(𝑥) (22.4) 

 

According to Eq. (22.4), the change in the shear force at a given location is equal to the loading which is applied at to 

the member to that section. From this we can conclude that a uniformly distributed load would cause the shear force 

to vary linearly over the length, and a concentrated point load would cause a sudden change in the shear force diagram. 

Using the Fundamental Theorem of Calculus, the change in the shear force between two points along the member 

which are subjected to the loading w(x) can be calculated as: 

 

∆𝑉𝐴𝐵 = 𝑉𝐵 − 𝑉𝐴 = ∫ 𝑤(𝑥)𝑑𝑥
𝐵

𝐴

 (22.5) 

 

Eq. (22.5) provides a means to calculate the shear force at any point along the member based on the given loading. 

Taking point A as the left side of the member where x = 0 and choosing point B as an arbitrary location which is x 

away from point A, then Eq. (22.5) can be used to find the shear force at any location along the member using the 

following heuristic: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The sign convention for Eq. (22.4) and (22.5) is that 

loads which act upwards will cause the shear force to 

become more positive and loads which act downwards will 

cause the shear force to become more negative.  
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Fig. 22.3 – Examples of obtaining the shear force diagram using the reaction forces and applied loads. 

 

The shear force in the member at a given location is the cumulative sum of the vertical forces 

applied to the member from the left end of the member to the location of interest. 

 

Fig. 22.3 illustrates the application of Eq. (22.4) and (22.5) to draw the shear force diagrams for two simple structures. 

As a consequence of Eq. (22.4), the shear force has sudden jumps at locations where there is a concentrated reaction 

force or load, as seen in the left example. In the right example, the beam is carrying a uniformly distributed load, 

which results in the shear force decreasing linearly along the length of the beam. For both examples, the shear force 

diagram returns to zero at the right-hand side, indicating that the sum of the vertical forces over the entire member 

equals zero and the member is in vertical equilibrium.  

 

Bending Moment Diagrams 

The bending moment diagram is related to the shear force diagram by the following relationship:  

 

𝑉(𝑥) =
𝑑

𝑑𝑥
𝑀(𝑥) (22.6) 

 

Eq. (22.6) states that the change in moment at a given section is equal to the shear force carried by the member at that 

location. In regions where there are large shear forces, the moment will change rapidly. Because the shear force is the 

derivative of the bending moment, a constant shear of V = 0 will cause the moment diagram to be constant, a constant 

nonzero shear force will cause the bending moment diagram to vary linearly, and a linearly varying shear force will 

cause the bending moments to vary quadratically. Using the Fundamental Theorem of Calculus, the change in moment, 

ΔM, between two points can then be related to the shear force, V(x), according to the following equation: 

 

∆𝑀𝐴𝐵 = 𝑀𝐵 −𝑀𝐴 = ∫ 𝑉(𝑥)𝑑𝑥
𝐵

𝐴

 (22.7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: this heuristic can also be applied by using the right 

side of the member as the starting point instead of the left 

side.  

 

 

 

 

 

 

 

 

 

Note: According to this definition, regions of high shear 

correspond to “steep” portions on the bending moment 

diagram, where the moment changes quickly. Regions of low 

shear correspond to comparatively “flat” portions on the 

bending moment diagram, where the moment stays 

approximately the same. 
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Fig. 22.4 – Examples of obtaining bending moment diagram using the shear force diagram. 

 

Eq. (22.7) states that the change in moment between two points, A and B, is equal to the area underneath the shear 

force diagram between these locations. Therefore, if the moment is known at the ends of the member, then the moment 

at any location can be computed using Eq. (22.7) once the shear force diagram has been drawn.  

 

Fig. 22.4 shows the same structures analyzed in Fig. 22.3 and the corresponding shear force diagrams and bending 

moment diagrams. For the structure on the left, the bending moment diagram is a series of connected lines because 

the shear force is constant between the applied loads. The change in moment between points is also equal to the area 

under the shear force diagram between them. For the uniformly distributed beam on the right, the bending moment 

diagram follows the shape of a parabola because the shear for diagram is linearly varying. Near the supports where 

the shear force is high, the slope of the bending moment diagram is also high, and at the midspan, where the shear 

force is equal to zero, the slope of the moment diagram is equal to zero, indicating that it has reached its maximum 

value. For both structures, the bending moment diagram begins at zero on the left-hand side and returns to zero at the 

right-hand side, indicating that the sum of moments over the member equals to zero, and the member is in rotational 

equilibrium.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: This condition where the moment equals zero over a 

support is only true if the ends of the structure are supported 

by a pin or roller. In general, the moment will not equal to 

zero over a pin or roller support if the support is located at 

an intermediate location.  

 

Note: The bending moment at the location of an internal 

hinge is equal to zero because the hinge will freely rotate if 

it tries to carry a moment.  
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Sign Convention 

Determining the sign of the shear force diagram and the bending moment diagram can be non-intuitive at first. Fig. 

22.5 shows the sign convention for shear force; a general heuristic is that upwards-acting forces induce positive shear 

forces into the member, while downwards-acting forces induce negative shear forces into the member.  

 
Fig. 22.5 – Sign convention for shear force. 

 

The sign convention for bending moments is shown in Fig. 22.6. Positive moment (which is unintuitively drawn below 

the axis on a bending moment diagram) corresponds to regions where the bottom of the member is in tension, and 

negative moment (drawn above the axis) corresponds to regions where the top of the member is in tension. When 

determining the bending moment diagram from the shear force diagram, a useful heuristic is to note that positive shear 

results in positive moment (which goes downwards on the bending moment diagram), whereas negative shear results 

in negative moment (which goes upwards on the bending moment diagram).   

 
Fig. 22.6 – Sign convention for bending moments. 
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Lecture 23 – Deflection of Beams: Moment Area Theorems 
Overview 

Like trusses, obtaining the deformed geometry of a member which is bending can require very complex calculations. 

In this chapter, the Moment Area Theorems, which permit the deflection of beams to be obtained in a relatively 

straightforward manner, are presented.  

 

Curvature Diagram 

When working on a problem involving beams, the reaction forces, shear force diagram, and bending moment diagram 

are typically obtained first. Using these diagrams, the flexural stresses can then be calculated once the relevant section 

properties, like the location of the centroidal axis and the second moment of area, are known. All of this information 

is necessary to begin calculating qualities relating the deformed shape of the member, like its displacement and slope, 

at key points of interest.  

 

The curvature of a member, ϕ, is related to the bending moment, M, and the flexural stiffness, EI, at any given point 

by the following equation:  

𝜙 =
𝑀

𝐸𝐼
 (23.1) 

 

The curvature at every point can be calculated using the bending moment diagram and the flexural stiffness, producing 

a corresponding curvature diagram.  

 

Moment Area Theorem #1 

Recall that the curvature of a member is a measure of how bent it is, and is defined as the change in slope, θ, per unit 

length along the member: 

𝜙 =
𝑑𝜃

𝑑𝑥
 (23.2) 

 

Using the Fundamental Theorem of Calculus, the change in slope between two points, ΔθAB, is therefore defined as 

the integral of the curvature between points A and B. This is mathematically defined in Eq. (23.3) below and represents 

the area underneath the curvature diagram between the two points.  

 

∆𝜃𝐴𝐵 = 𝜃𝐵 − 𝜃𝐴 = ∫ 𝜙(𝑥)𝑑𝑥
𝐵

𝐴

 (23.3) 

 

Eq. (23.3) is the first Moment Area Theorem, which states:  

 

The change in slope between any two sections of a deflected beam is equal to the area under the 

curvature diagram between those two sections. 

 

The first Moment Area Theorem allows us to obtain the slope at any location using the curvature diagram if the slope 

is already known at some point along the member. This is illustrated in Fig. 23.1. 

 

  

 
Fig. 23.1 – Summary of Moment Area Theorem #1 
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Moment Area Theorem #2 

Careful integration of the curvature diagram can also be useful for calculating the displaced shape of a member. 

Consider the curved member shown in Fig. 23.2 which has two points, D and T, defined. Points D and T are located 

at arbitrary distances xD and xT from the origin respectively in the horizontal direction.  

 

 
Fig. 23.2 – Curved member used to derive Moment Area Theorem #2. 

 

Consider a small length of the beam, Δs, which is located at point T. The curvature at this location is equal to ϕ(xT). 

If Δs is a short distance, then the change in slope of the beam between x = xT and x = xT - ds is approximately equal 

to the following:  

 

∆𝜃(𝑥 = 𝑥𝑇) ≅ 𝜙(𝑥𝑇)∆𝑠 (12.4) 
 

Fig. 23.2 shows this change in angle at point T. If we define the distance rDT as the distance between point T and a 

location directly below point D which is measured along the tangent to point T, then the arc length swept by this 

tangent, Δδ, over the angle Δθ is equal to: 

 

∆𝛿 = 𝑟𝐷𝑇∆𝜃(𝑥 = 𝑥𝑇) ≅ 𝑟𝐷𝑇𝜙(𝑥𝑇)∆𝑠 (12.5) 
 

In structural engineering, members tend to have relatively small curvatures and associated displacements. This allows 

us to approximate the distance along the member, Δs, as a distance in the horizontal direction, Δx. Furthermore, the 

distance along the tangent, rDT, is now the horizontal distance between points D and T, xDT, and Δδ becomes a vertical 

distance Δy. These approximations allow Eq. (12.5) to be rewritten as: 

 

∆𝑦𝐷𝑇 = 𝑥𝐷𝑇𝜙(𝑥𝐷𝑇)∆𝑥 (12.6) 
 

Eq. (12.6) represents the vertical distance between a tangent drawn at point T towards point D as the tangent traverses 

over a small angle dθ. The total vertical distance between a tangent drawn at point T and point D for the curved beam, 

δDT, can be obtained if we repeat the process for the entire length of the beam between points D and T, resulting in 

the following integral in the limit where Δx goes to zero: 

 

Note: Displacements can be obtained by drawing a slope 

diagram using Eq. (23.3) and then integrating it to find a 

complete profile of the displaced shape of the member. 

However, this process is difficult to do analytically except 

for very simple geometries and loading conditions.  
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𝛿𝐷𝑇 = lim
∆𝑥→0

∑𝑥𝜙(𝑥)∆𝑥 = ∫ 𝑥𝜙(𝑥)𝑑𝑥
𝑇

𝐷

 (12.7) 

 

The integral term in Eq. (12.7) represents the first moment of the area underneath the curvature diagram between 

points D and T taken about point D. This quantity can be obtained by multiplying the area under the curvature diagram 

between points D and T, then multiplying this area by the distance between its centroid and point D, .𝑥̅𝐷𝑇 .This is 

mathematically represented using the following equation: 

 

𝛿𝐷𝑇 = ∫ 𝑥𝜙(𝑥)𝑑𝑥
𝑇

𝐷

= 𝑥̅𝐷𝑇∫ 𝜙(𝑥)𝑑𝑥
𝑇

𝐷

 (12.8) 

 

Eq. (12.8) is the second Moment Area Theorem, which is illustrated in Fig. 23.3 and states: 

 

For any two points, called D and T, along the length of a deflected beam, the deviation of point 

D from the tangent drawn at point T equals the area under the curvature diagram between points 

D and T, times the distance from the centroid of the diagram to point D (i.e., the first moment of 

area about point D). 

 

Although the second Moment Area Theorem does not allow us to directly calculate the displacements of a beam, it is 

possible to express the desired displacement in terms of tangential deviations, δDT, which can be calculated using Eq. 

(12.8). When using the theorem, points D and T must be correctly indicated in order to obtain the desired value: 

 

• D is the location where the tangential deviation is being measured 

• T is the location where the tangent is drawn 

 

Based on these definitions, the curvature diagram is integrated between points D and T, and that area is multiplied by 

the distance between its centroid and point D, the location where the deviation is being measured.  

 

Areas and Centroids of Common Shapes 

When using the Moment Area Theorems, the areas and centroids of many different curvature distributions will need 

to be obtained. Table 23.1 provides a series of simple expressions for the areas and centroids of many common shapes, 

and is a convenient alternative to analytically integrating the curvature diagram. For distributions which are not shown 

in the table but can be broken up into n simpler subcomponents, the two theorems can be applied by summing of the 

contributions of the smaller parts to Δθ or δ. This modifies Eqs. (23.3) and (23.8) to be the following:  

 

∆𝜃𝐴𝐵 = ∫ 𝜙(𝑥)𝑑𝑥
𝐵

𝐴

=∑[∫𝜙(𝑥)𝑑𝑥]

𝑛

𝑖=1 𝑖

(23.9) 

 

𝛿𝐷𝑇 = ∫ 𝑥𝜙(𝑥)𝑑𝑥
𝑇

𝐷

= 𝑥̅𝐷𝑇∫ 𝜙(𝑥)𝑑𝑥
𝑇

𝐷

=∑[𝑥̅∫𝜙(𝑥)𝑑𝑥]

𝑛

𝑖=1 𝑖

(23.10) 

 
Fig. 23.3 – Summary of Moment Area Theorem #2. 
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Table 23.1 – Areas and centroids of common shapes. 
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Lecture 24 – Using Moment Area Theorems 
Overview: 

This chapter demonstrates how to use the Moment Area Theorems presented in Lecture 23 to solve for displacements 

and rotations in simple structures under common loading situations.  

 

General Procedure 

In addition to being designed for strength structures must also have adequate stiffness so they do not experience 

unreasonable deformations when carrying loads. Two measures of a member’s deformation are its slope, θ, and how 

much it has displaced from its original position, Δ.  

 

The two Moment Area Theorems introduced in Lecture 23 provide the means to obtain quantities related to the displaced 

shape of a loaded member. The first Moment Area Theorem (MAT1) allows us to calculate the change in angle between 

two locations, ΔθAB, by finding the area under the curvature diagram between these two points. This is mathematically 

represented in Eq. (24.1): 

∆𝜃𝐴𝐵 = 𝜃𝐵 − 𝜃𝐴 = ∫ 𝜙(𝑥)𝑑𝑥
𝐵

𝐴

 (24.1) 

 

The second Moment Area Theorem (MAT2) allows us to calculate the vertical distance between a point on the displaced 

member, point D, and a tangent which is drawn from another point on the displaced member, point T. This distance, 

the tangential deviation of point D from a tangent drawn at point T, is equal to the area of the curvature diagram between 

points D and T multiplied by the distance between its centroid and point D: 

 

𝛿𝐷𝑇 = ∫ 𝑥𝜙(𝑥)𝑑𝑥
𝑇

𝐷

 (24.2) 

 

Although the two Moment Area Theorems allow displacement-related quantities about the structure to be obtained, they 

do not allow us to directly calculate the slope or deflection of the deformed member at a specific point of interest. 

Instead, they must be used together with other information about the structure – such as how it is loaded and how it is 

supported – to obtain the displacements and slopes.  

 

A general procedure for calculating the slopes and displacements of a loading member is the following: 

 

i. Calculate the reaction forces and draw the shear force, bending moment, and curvature diagrams. 

ii. Sketch out an approximate shape of the deformed structure. 

iii. Identify any locations where the deflection and slope of the member are known by considering the supports 

and loading conditions. Locations where the tangent is horizontal are particularly helpful. 

iv. Calculate the slope at a location of interest by using a known angle and Moment Area Theorem no. 1. 

v. Express the desired displacement in terms of tangential deviations which can be calculated using Moment Area 

Theorem no. 2 and solve.  

 

This general procedure will be illustrated using three common scenarios. 
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Scenario 1 – Known Horizontal Tangent due to a Support Condition 

Consider the cantilever structure shown in Fig. 24.1 which is carrying a point load which is located at its tip. The fixed 

end restrains the member from rotating, and hence the slope of the member at the support remains flat even when the 

member curves under the load. Therefore, a tangent which touches this point will be horizontal, as shown in the second 

drawing in Fig. 24.1. Since the fixed end also prevents the member from translating at this point, the tangent effectively 

acts along the undeformed length of the member.  

 
Fig. 24.1 – Undeformed (left) and deformed (right) geometry of a loaded cantilever. 

 

Calculating the slope at any point along the member can be done using MAT1 using the knowledge that θA = 0 due to 

the fixed end. For example, the slope of the member at the tip, θB, is equal to the area under the full curvature diagram 

as shown below: 

∆𝜃𝐴𝐵 = 𝜃𝐵 − 0 → 𝜃𝐵 = ∫ 𝜙(𝑥)𝑑𝑥
𝑥=𝐿

𝑥=0

 (24.3) 

 

Evaluating this integral results in the following expression for the slope at the tip: 

 

𝜃𝐵 =
1

2
× 𝐿 ×

𝑃𝐿

𝐸𝐼
=
𝑃𝐿2

2𝐸𝐼
 (24.4) 

 

The horizontal tangent at the fixed end is also useful for evaluating the vertical displacement of the cantilever at any 

point because the deviation of the displaced member from that horizontal tangent is simply equal to the displacement. 

For example, the displacement of the tip, ΔB, can be written as the tangential deviation of point B from a tangent drawn 

at the fixed end: 

∆𝐵= 𝛿𝐵𝐴 (24.5) 
 

Evaluating the tangential deviation results in the following expression for ΔB: 

 

∆𝐵= (
1

2
× 𝐿 ×

𝑃𝐿

𝐸𝐼
) × (

2

3
× 𝐿) =

𝑃𝐿3

3𝐸𝐼
 (24.6) 
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Scenario 2 – Known Horizontal Tangent due to Symmetrical Loading Conditions 

When a structure is subjected to symmetrical loading conditions, this sometimes results in the location of a horizontal 

tangent being known. Consider the symmetrical beam shown in Fig. 24.2 which supports a point load at its midspan. It 

can be deduced that the maximum displacement occurs at the midspan, which implies that a tangent which touches this 

point is horizontal. The deformed shape of the beam and this horizontal tangent are shown in the Fig. 24.2 as well.  

 

 
Fig. 24.2 - Undeformed (left) and deformed (right) geometry of a symmetrically loaded beam. 

 

As with the previous scenario, the slope of the member at any location along its length can be determined by using the 

slope at the midspan, θC = 0, as a reference. For example, the slope at the right support, θD, is equal to the area underneath 

the curvature diagram between points C and D: 

 

∆𝜃𝐶𝐷 = 𝜃𝐷 − 0 → 𝜃𝐷 = ∫ 𝜙(𝑥)𝑑𝑥
𝐷

𝐶

 (24.7) 

 

Evaluating the area underneath the curvature diagram between points C and D results in the following expression for 

θC: 

𝜃𝐷 =
1

2
×
𝐿

2
×
𝑃𝐿

4𝐸𝐼
=
𝑃𝐿2

16𝐸𝐼
 (24.8) 

 

The horizontal tangent at the midspan is also useful for determining the vertical displacements at other points along the 

member. Suppose the upwards displacement of the tip, ΔE, is desired. As shown in Fig. 24.2, this displacement can be 

calculated by taking the tangential deviation of point E from the tangent at C, and subtracting the deviation of the 

support, point D, from the same tangent: 

 

∆𝐸= 𝛿𝐸𝐶 − 𝛿𝐷𝐶  (24.9) 
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δEC and δDC are calculated by obtaining the area beneath the curvature diagram between points EC and DC respectively 

and multiplying this area by the distance from the centroid of the area to the location where the deviation is being 

calculated. In the case of δEC, this results in the following: 

 

𝛿𝐸𝐶 = (
1

2
×
𝐿

2
×
𝑃𝐿

4𝐸𝐼
) × (

2

3
×
𝐿

2
+
𝐿

2
) =

5𝑃𝐿3

96𝐸𝐼
 (24.10) 

 

δDC is calculated as: 

 

𝛿𝐷𝐶 = (
1

2
×
𝐿

2
×
𝑃𝐿

4𝐸𝐼
) × (

2

3
×
𝐿

2
) =

𝑃𝐿3

48𝐸𝐼
 (24.11) 

 

Substituting the results of Eqs. (24.10) and (24.11) into Eq. (24.9) results in ΔE being equal to: 

 

∆𝐸=
5𝑃𝐿3

96𝐸𝐼
−
𝑃𝐿3

48𝐸𝐼
=
𝑃𝐿3

32𝐸𝐼
 (24.12) 

 

Scenario 3 – No Known Horizontal Tangents 

In many instances, structures will be subjected to nonsymmetric loading, which means that the location of the maximum 

displacement (and therefore the horizontal tangent) cannot be determined without detailed calculations. An example of 

this is the simply supported beam carrying a point load located L/3 away from its right support in Fig. 24.3.  

 

 
Fig. 24.3 - Undeformed (left) and deformed (right) geometry of an asymmetrically loaded beam. 

 

Despite the lack of a known angle or flat tangent, the displacements and slopes can still be obtained by determining the 

deviation of one support from a tangent to the other support, like in the top right drawing in Fig. 24.3. If we assume that 

the beam is experiencing small deformations, then the slope at support A is approximately equal to: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The maximum displacement does not occur right 

underneath the applied load. It occurs where the slope of 

the beam is equal to zero (which cannot usually be 

determined from inspection).  
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𝜃𝐴 ≅
𝛿𝐶𝐴
𝐿
 (24.13) 

 

The tangential deviation δCA can be calculated by dividing the curvature diagram into two triangles, resulting in the 

following expression: 

 

𝛿𝐶𝐴 = 𝐴1𝑑1 + 𝐴2𝑑2 = (
1

2
×
2

3
𝐿 ×

2𝑃𝐿

9𝐸𝐼
) × (

𝐿

3
+
1

3
×
2

3
𝐿) + (

1

2
×
𝐿

3
×
2𝑃𝐿

9𝐸𝐼
) × (

2

3
×
𝐿

3
) =

4𝑃𝐿3

81𝐸𝐼
 (24.14) 

 

Therefore, θA can be calculated using Eq. (24.13) and used as a reference to find the slope anywhere else along the 

member: 

 

𝜃𝐴 =
4𝑃𝐿2

81𝐸𝐼
 (24.15) 

 

Suppose the displacement at the midspan, ΔB, was of interest. This displacement can be obtained by drawing a similar 

triangle which relates the triangle outlined by the tangent and δCA to another triangle outlined by the tangent and the 

vertical distance between the tangent and the original position of the beam at the midspan. Using similar triangles results 

in the following equation: 

 

𝜃𝐴 =
𝛿𝐶𝐴
𝐿
=
∆𝐵 + 𝛿𝐵𝐴
0.5𝐿

 (24.16) 

 

Therefore, if the deviation of the midspan from a tangent drawn at support A is known, then ΔB can be calculated by 

using Eq. (24.16). This deviation, δBA, can be found by using MAT2, resulting in: 

 

𝛿𝐵𝐴 = (
1

2
×
𝐿

2
× (

3

4
) ×

2𝑃𝐿

9𝐸𝐼
) × (

1

3
×
𝐿

2
) =

𝑃𝐿3

72𝐸𝐼
 (24.17) 

 

Re-arranging Eq. (24.16) substituting our results from Eqs. (24.14) and (24.17) allows ΔB to be obtained:  

 

∆𝐵=
1

2
× 𝛿𝐶𝐴 − 𝛿𝐵𝐴 =

7𝑃𝐿3

648𝐸𝐼
 (24.18) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: the 3/4 factor in Eq. (24.17) is used to obtain the 

curvature at the midspan by scaling the curvature 

underneath the point load.  
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Lecture 25 – Shear Stresses in Beams 
Overview 

High shear forces carried by short members can lead to shear failures. In this chapter, the concept of shear stresses is 

introduced and Jourawski’s equation for obtaining these shear stresses is derived.   

 

Shear Stresses 

Shear stresses are the stresses which occur in structures which are carrying a shear force which is perpendicular to 

their longitudinal axis. Like axial stresses, σ, the shear stress, τ, is equal to the force applied parallel to a surface, V, 

divided by the area over which it acts, A: 

 

𝜏 =
𝑉

𝐴
 (25.1) 

 

Fig. 25.2 shows a small square element cut from a larger beam which is carrying vertical shear stresses on its left and 

right faces. Although the stresses on the two sides satisfy vertical equilibrium, they produce a couple which tends to 

cause the element to rotate. Therefore, complementary shear stresses exist on the top and bottom faces to satisfy 

rotational equilibrium. These shear stresses can be resolved into tensile and compressive stresses which act diagonally.   

 
Fig. 25.2 – Shear stresses in beams (left), elements in pure shear (centre), resulting diagonal stresses (right). 

 

Axial stresses, which are associated with axial strains, ε, tend to cause materials to change volume by causing an 

expansion or contraction of the material. This volume change does not however affect the overall shape of the material. 

Shear stresses, which are associated with shear strains, γ, tend to cause materials to change shape while maintaining 

their volume. This is illustrated in Fig. 25.3.  

 
Fig. 25.3 – Comparison of axial deformations (left) and shear deformations (right). 

 

 
Fig. 25.1 – Summary of Jourawski’s equation for shear 

stresses in beams. 
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Shear stresses produce failures which are very different than the failures caused by axial loads and bending moments, 

which are instead associated with axial stresses. Some of examples of how shear causes structural failures are 

illustrated in Fig. 25.4. The first mode of failure, which can occur in wooden members, is a failure caused by the 

sliding of adjacent elements due to the horizontal complementary shear stresses. The second mode of failure is caused 

by the diagonal tensile stresses associated with shear, which can lead to failures in brittle materials like concrete. A 

third mode of failure which is not shown is caused by the diagonal compressive stresses associated with shear, which 

may lead to diagonal buckling of thin members.  

 

  
Fig. 25.3 – Failures associated with shear stresses – sliding between the fibres of a wooden  

beam (left) and diagonal cracking in a concrete beam (right). 

 

Although Eq. (25.1) is a simple definition of the shear stress, calculating these stresses in beams which carry shear 

forces is more complicated because these shear stresses are not constant over the cross section. Instead, Jourawski’s 

equation, shown below in Eq. (25.2), must be used to find them: 

 

𝜏 =
𝑉𝑄

𝐼𝑏
 (25.2) 

Derivation of Jourawski’s equation 

Consider a beam which is carrying loads that are perpendicular to its longitudinal axis. Recall that the relationship 

between the bending moment and the shear force is: 

𝑉 =
𝑑𝑀

𝑑𝑥
 (25.3) 

 

Therefore, in regions where there are shear forces, the moment will be changing along the length of the beam. This 

changing moment means that the flexural stresses will also be varying along the member as well.  

 

Fig. 25.5 shows a portion of a beam which has a length of Δx which has been sliced out of a region of a beam which 

is carrying shear. For simplicity, the cross-section of the beam is a rectangle with width b and second moment of area 

I. On the left side of the beam, the moment will be equal to M, while on the right side of the beam, the moment carried 

by the section will be slightly larger, M + ΔM.  
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Fig. 25.5 – Slice of a beam carrying bending 

moments and shear forces. 

Fig. 25.6 – Free body diagram showing how shear stresses 

provide horizontal equilibrium. 

 

We can obtain an expression for the shear stress at a particular depth of this beam by drawing a free body diagram 

which cuts through this body to an arbitrary depth of interest, like the one shown in Fig. 25.6. The flexural stresses 

applied to this body cause it to be in compression, and because the moment is higher on the right side, the body will 

have a tendency to be pushed to the left. The net force which pushes the body to the left, ΔC, is caused by the increment 

in moment, ΔM, and is equal to: 

 

∆𝐶 =  ∫ 𝜎(𝑦)𝑑𝑦
𝑦=𝑦𝑡𝑜𝑝

𝑦=𝑦𝑜

= ∫
∆𝑀𝑦

𝐼
𝑑𝑦

𝑦=𝑦𝑡𝑜𝑝

𝑦=𝑦𝑜

 (25.4) 

 

Eq. (25.4) can be simplified by removing the constants ΔM and I from the integral, and representing the integral, 

which is a first moment of area about the centroidal axis of the member, as the quantity Q: 

 

∆𝐶 =
∆𝑀

𝐼
∫ 𝑦𝑑𝑦
𝑦=𝑦𝑡𝑜𝑝

𝑦=𝑦𝑜

=
∆𝑀

𝐼
𝑄 (25.5) 

 

In order to satisfy horizontal equilibrium, there must be a companion force which resists ΔC. This resisting force is 

provided by the shear stresses acting on the underside of the body, which produce an equal and opposite force resulting 

in the following: 

 

∆𝐶 = 𝜏𝑏∆𝑥 (25.6) 
 

Equating Eqs. (25.5) and (25.6) and isolating for the shear stress results in the following:  

 

𝜏 =
∆𝑀

∆𝑥

𝑄

𝐼𝑏
 (25.7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The area over which the shear stress acts is equal to 

the width of the beam, b, multiplied by the length of the body, 

Δx.  
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If the length of our body approaches zero, then the term ΔM/Δx becomes equal to the shear force V due to Eq. (25.3), 

resulting in Jourawski’s equation which is reproduced below: 

 

𝜏 = lim
∆𝑥→0

∆𝑀

∆𝑥

𝑄

𝐼𝑏
=
𝑉𝑄

𝐼𝑏
 (25.8) 

 

Calculating the First Moment of Area, Q 

Q is defined as the first moment of area of the portion of the cross-sectional area about the centroidal axis of the 

member. The area considered is taken as the area from the depth of interest to the top or the member, or the area from 

the bottom of the member to the depth of interest, yo: 

 

𝑄(𝑦 = 𝑦𝑜) = ∫ 𝑦𝑑𝐴
𝑦𝑜

𝑦𝑏𝑜𝑡

= ∫ 𝑦𝑑𝐴
𝑦𝑡𝑜𝑝

𝑦𝑜

 (25.9) 

 

Q can be evaluated by following the procedure outlined below: 

i. Determine the depth of interest where Q is being calculated. 

ii. Calculate the area, A, of the cross section between the depth of interest to the top of the member; alternatively, 

the area of the cross section between the depth of interest to the bottom of the member.  

iii. Determine the distance between the centroid of the area found in step ii and the centroid of the cross section, 

d.  

iv. Calculate Q using Eq. (25.10): 

 

𝑄 = 𝐴𝑑 (25.10) 
 

Distribution of Shear Stresses 

Like the axial stresses caused by bending moments, the shear stresses carried in a member are not constant over the 

depth of the cross section. This is because Q depends on where the shear stress is being calculated, and the width of 

the member, b, may vary over the height of the member.  

 

Consider a rectangular cross section, shown in Fig. 25.8, which has a height of h, a width of b, and whose centroidal 

axis is located at a height of h/2 above the base. The value of Q calculated for an arbitrary depth located a distance y 

from the bottom of the cross section is: 

 

𝑄 = 𝐴𝑑 = (𝑏𝑦) × (
ℎ

2
−
𝑦

2
) =

1

2
𝑏𝑦(ℎ − 𝑦) (25.11) 

 

From Eq. (25.11), we can deduce three properties of Q which generally apply to all cross-sectional shapes: 

i. Q varies parabolically over the height of the member. 

ii. Q is equal to 0 at y = 0 and y = h, i.e., Q is equal to zero at the top and the bottom of the member. 

iii. The largest value of Q occurs at y = h/2. In general, Q is maximized at the centroidal axis of the member. 

 

For rectangular members, b is a constant, and hence the shear stress distribution will be parabolic.  

 

 

 

 

 

 

Note: When calculating Q, the area under consideration can 

be broken up into n smaller areas whose local centroid is 

easier to calculate. If this is done, then Eq. (25.10) becomes: 

 

𝑄 =∑𝐴𝑖𝑑𝑖

𝑛

𝑖=1

 (25.11) 

 

Fig. 25.7 shows the application of Eq. (25.11) to find the 

shear stress at the mid-height of a T-beam 

 

 
Fig. 25.7 – Calculating Q for more complex shapes. 

 

 

 
Fig. 25.8 – Derivation of Q for a rectangular cross section 

and resulting distribution over the member height. 
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Lecture 26 – Wood Beams 
Overview 

Along with steel and concrete, wood is one of the most commonly used materials for building structures. In this 

chapter, the various structural properties of wood are discussed, and tables of wood properties are presented and 

explained.  

 

Properties of Wood 

Wood has historically been used as a building material since perhaps the beginning of civilization due to its strength, 

workability, and abundance in nature in many parts of the world. Woods can be classified as being softwoods or 

hardwoods, with softwoods typically coming from coniferous trees and hardwoods from deciduous species. 

Hardwoods are typically stronger, stiffer, heavier, and more difficult to work with than softwoods. Due to their 

relatively low cost and ease of use, softwoods tend to be used extensively in construction, while the more expensive 

hardwoods tend to be used for furniture, high-end finishes, and musical instruments due to their durability. Examples 

of softwood and hardwood species are shown in Fig. 26.1.  

 

  
Fig. 26.1 – Examples of a softwood (Douglas Fir) and a hardwood (Red Oak). 

 

The internal structures of both types of woods, shown in Fig. 26.2, resemble a series of fibres oriented along the height 

of a growing tree. Within the hardwood, there is a mixture of larger vessels embedded in a tightly packed matrix of 

smaller fibres, while the softwoods are composed of uniformly distributed vessels which are hollow to allow water 

and nutrients to move throughout the tree. The dense fibres in the hardwood give the material its strength, stiffness, 

and weight, while the relatively soft tubes in the softwood make it easier to work with.  

 

Wood, being a naturally occurring material, differs in many ways from an engineered material like steel. Since the 

structure of wood is biased along the height of the tree, the material properties of wood are different depending on the 

direction of loading relative to the orientation of the fibres; this is unlike the uniform response which steel exhibits. 

The property of having different mechanical properties in various directions makes wood an anisotropic material, 

unlike steel which is an isotropic material.  

 

 

 
Fig. 26.2 – Schematic showing the structure of hardwoods 

(left) and softwoods (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The strength and stiffness of wood generally differ 

parallel to the grain and perpendicular to the grain; because 

these directions are orthogonal, wood is example of an 

orthotropic material, which is a subset of anisotropic 

materials.  
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Another important aspect to consider when working with timber structures is that wood has a wide range of mechanical 

properties which cannot be precisely specified in design. Therefore, appropriate values of strength and stiffness to use 

in design must be obtained by extensive testing, and larger factors of safety are typically employed.   

 

Response of Wood to Loading 

Timber members, often used as beams or columns in structures, typically need to support axial loads, bending 

moments, and shear forces. Wooden members tend to perform well when loaded in ways which resemble the forces 

which trees must resist in nature, namely high bending moments and axial forces which act along the direction of the 

fibres. When subjected to axial forces which act parallel to the grain, wooden members are strong and stiff. This 

allows them to carry high tensile forces, which occur in a wooden truss structures, and high compression forces, which 

occur in columns in buildings.   

 

In construction, large heavy objects are often placed on the ground and supported from below by smaller wooden 

pieces. This loads the wood in compression perpendicular to the grain. Under this loading condition, the response of 

the wood is much softer and ductile than when loaded parallel to the grain, especially in softwoods. This property 

makes wood an ideal material to use when placing delicate objects on the ground. The differences in the compression 

response of woods when loaded parallel to the grain and perpendicular to the grain is illustrated in Fig. 26.3.  

 

 
Fig. 26.3 – Comparison of stress-strain response of wooden members loaded in 

compression parallel to the grain and perpendicular to the grain. 

 

When used in beams, timber members must carry significant bending moments and shear forces. Wooden members 

are strong in bending because the resulting flexural stresses act along the fibres of the material. However, they are 

susceptible to failing in shear because the fibres can be separated by the resulting shear stresses relatively easily. An 

example of a wooden beam failing in shear can be seen in Fig. 26.4. 
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Fig. 26.4 – Timber beam loaded under four-point bending. Note the shear failure on the left side of the beam which 

has caused the previously vertical lines to separate, and the flexural failure at the midspan.  

 

Wood Design Tables 

As noted earlier in the chapter, wood is not an engineering product and hence has great variability in its material 

properties. Fig. 26.5, which shows the failure stresses of 2110 small wooden specimens when loaded in flexure, 

illustrates the range of strengths which may exist for specimens cut from the same tree. The measured strengths, which 

are roughly normally distributed, were on average 50.2 MPa. However, the weakest specimens were less than half of 

the average strength, and the strongest ones were approximately 60% stronger. To account for the variability in 

strength, the 5th percentile strength is typically used in design, along with a factor of safety of 1.5. 

 
Fig. 26.5 – Distribution of flexural strengths obtained by testing 2110 small wooden specimens. 

 

Tables of material properties of many types of wood are shown in Table 26.1 and in Appendix D. The tables are 

categorized as being for smaller members (top) and for larger members (bottom). This is because the material strengths 

used in design vary depending on the size of the wooden members used. The 5th percentile strengths of smaller 

members tend to be weaker because they are more strongly influenced by the presence of knots and other defects. 
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In the tables, the 5th percentile Young’s modulus, E05, and the average Young’s modulus, E50, are provided in the far-

right columns. When determining the strength of a member, like when estimating its buckling load, E05 should be 

used. Deflection calculations on the other hand should be done using E50.   

 

Table 26.1 – Wood Properties. Small specimens (top) and large specimens (bottom) 
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Lecture 27 – Shear Stresses in I Beams and Box Beams 
Overview 

In this lecture, procedures for calculating the shear stresses for more complex shapes are discussed.  

 

Shear Stresses in Complex Shapes 

For a member with second moment of area I and subjected to a shear force V, Jourawski’s equation can be used to 

determine the shear stresses, τ: 

 

𝜏 =
𝑉𝑄

𝐼𝑏
 (27.1) 

 

When Eq. 27.1 was used to find the shear stresses for a rectangular member in Lecture 25, b was constant over the 

height and the change in shear stresses over the height was due to the varying first moment of area, Q, defined as: 

 

𝑄(𝑦 = 𝑦𝑜) = ∫ 𝑦𝑑𝐴
𝑦𝑜

𝑦𝑏𝑜𝑡

= ∫ 𝑦𝑑𝐴
𝑦𝑡𝑜𝑝

𝑦𝑜

 (27.2) 

 

In Eq. (27.2), yo is the depth of interest, ybot and ytop refer to the bottom and top of the cross section respectively, and 

y is the vertical distance measured from the centroid of the cross section. For complex shapes, Q is typically calculated 

by subdividing the area of interest into n smaller areas, Ai, whose centroids are each a distance di away from the 

centroid of the cross section. Q is then calculated as:  

 

𝑄 =∑𝐴𝑖𝑑𝑖

𝑛

𝑖=1

 (27.3) 

 

When calculating the shear stresses in more complex shapes like I beams, T beams or box beams, Eqs. (27.1) to (27.3) 

are still valid. However, Q must account for the geometry more carefully and b is the width of the cross section at the 

location of interest. Fig.  27.1 illustrates an example of how Q and b are obtained when calculating the shear stresses 

in the web of an I beam.  

 
Fig. 27.1 – Calculation of shear stresses in an I beam. 

  

 

 

 

 

 

 

 

 

 

Note: Recall that Q can be calculated by integrating from the 

bottom of the member up to the depth of interest, or by 

integrating from the top of the member down to the depth of 

interest. Both will produce the same result; this is reflected 

in Eq. 27.2. 
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Built-Up Sections with Glued Components 

It is common to construct larger cross sections by fastening together smaller components together using glue or 

mechanical fasteners like screws or nails. For these built-up sections, the ability of these connections to resist shear 

stresses is crucial for the section to behave together as a whole instead of as several smaller pieces. 

 

 
Fig. 27.2 – Calculating shear stresses for built-up sections with horizontal glued surfaces.  

Either method will produce the correct value. 

 

For horizontal glued surfaces, like those shown in Fig. 27.2, determining the shear stresses simply involves using 

Jourawski’s equation at the depth of interest and taking b as the combined width of the interfacing surfaces. When the 

surfaces are vertical, like in the situations shown in Fig. 27.3, the typical procedure for calculating Q still applies, 

however the value of b to use is the total width of the vertical glued surfaces. In this case, the area of interest in the 

calculation of A is now best described as the area of the cross section which will slide longitudinally if the glue fails.  

 

 
Fig. 27.3 – Calculating shear stresses for built-up sections with vertical glued surfaces 

Either method will produce the correct value. 

 

Note: The methods described in Figs. 27.2 and 27.3 can be 

used together when determining the shear stresses on glued 

surfaces with both horizontal and vertical components.  
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Distribution of Shear Stresses 

Having a variable width over the height of a member has a pronounced effect on the shear stress distribution. For 

these shapes, Q is still equal to zero at the top and bottom of the member, reaches its maximum at the centroid, and 

varies parabolically in between. Applying Jourawski’s equation results in the somewhat unusual shear stress 

distributions shown in Fig. 27.4. The shear stress distribution largely follows the shape of Q, but suddenly increases 

when there is an abrupt reduction in width, and suddenly decreases for abrupt increases in width.  

 

 
Fig. 27.4 – Shear stress distributions for a wide flange (top) and T-shaped (bottom) sections. 

 

 

 

 

 

 

 

 

Note: When determining the maximum shear stress in a 

member with varying width, a good strategy is to check both 

the narrowest part of the member, where b is minimized, and 

at the centroidal axis, where Q is maximized. 
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Lecture 28 – Thin-Walled Box Girders 
Overview 

Hollow structures are efficient, being lightweight yet strong and stiff. In this chapter, the development and use of 

hollow members made from assemblies of thin plates is discussed.  

 

Advantages of Hollow Structures 

The obvious advantage of using hollow members is that they weigh less than solid members which share the same 

outside dimensions. This reduction in weight however does not coincide with an equivalent reduction in strength and 

stiffness. Consider a hollow square member which has outside dimensions b, and thickness t. Its cross-sectional area, 

which is related to its weight, is equal to: 

 

𝐴 = 𝑏2 − (𝑏 − 2𝑡)2 (28.1) 
 

The second moment of area, I, which is related to the member’s flexural stiffness and buckling strength, is equal to: 

 

𝐼 =
𝑏4

12
−
(𝑏 − 2𝑡)4

12
 (28.2) 

 

Eqs. (28.1) and (28.2) show that A and I do not decrease at the same rate as a solid member gradually becomes hollow; 

in the case of the area, it reduces quadratically while the second moment of area follows a quartic relationship. These 

relationships are plotted in Fig. 28.1. 

 

 
Fig. 28.1 – Relationship between A (red) and I (blue) and the wall thickness of a hollow square member. 
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As shown in Fig. 28.1, reducing the area, and hence the weight, of members by making them hollow leads to smaller 

reductions in the flexural stiffness. This makes hollow members useful for situations where the bending stiffness is 

important, like in beams or slender columns which tend to fail by buckling.  

 

Design Considerations 

In many ways, thin-walled hollow structures behave in the same way as solid members: they may fail by yielding in 

tension, buckling is a possibility when in compression, and they may also fail due to high flexural or shear stresses. 

An additional consideration for hollow members is that they may also fail due to local buckling of the thin walls. This 

kind of buckling is characterized by an instability of the walls themselves, as opposed to instability of the complete 

member, which is the case with Euler buckling. Thin plate buckling is discussed in more detail in Lectures 29 and 30.  

 

Historical Development 

A significant advance in the use of thin-walled box girders was in the Brittania Bridge, which was designed by the 

English engineer Robert Stevenson and built between 1847 and 1850. Stevenson’s bridge, shown under construction 

in Fig. 28.2, consisted of two iron tubes running side by side over a clear span of 460 ft. This was a significant 

engineering accomplishment because the previous record for the longest box girder was only 31 ft.  

 

The elevation, plan, and cross section views of the bridge are shown in Fig. 28.3. The structure ran continuously over 

several intermediate supports, being subjected to both large positive and negative bending moments along its full span. 

In regions of positive moments, which typically occurred between the supports, the top of the bridge carried flexural 

compression stresses. The negative moment regions occurred over the supports, and typically resulted in slightly 

smaller compressive stresses which instead acted on the bottom of the member. To prevent the thin plates on the top 

and bottom of the bridge from locally buckling, Stevenson had vertical stiffeners fastened to them, restraining them 

from moving up and down. These stiffeners, which are visible in the cross section of the bridge, were more closely 

spaced on the top flange because the flexural compression stresses were higher in these areas.  

 

  
Fig. 28.3 – Elevation (top left), plan (bottom left) and cross section (right) views of the Brittania Bridge. 

 

 

 
Fig. 28.2 – The Brittania Bridge under construction. 

 

 

 

 

 

 

 

 

 

 
Fig. 28.4 – Surviving segment of the  

original Brittania Bridge. 
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Lecture 29 – Buckling of Thin Plates 
Overview 

Buckling of thin plates is a phenomenon which occurs in thin-walled sections which are subjected to axial 

compression, moment, or shear. In this chapter, the basic equations for characterizing the strength of plates are 

presented for common cases.  

 

Theoretical Background 

In Lecture 14, the derivation of Euler’s equation for slender members was presented. Euler’s equation, which is 

applicable for one-dimensional members with length L and flexural stiffness EI, states that the buckling load for a 

member free to rotate on its two ends is: 

 

𝑃𝑒 =
𝑝𝑖2𝐸𝐼

𝐿2
 (29.1) 

 

For a plate which has a width of b and thickness t like the one shown in Fig. 29.1, the second moment of area will be 

equal to bt3/12. Substituting this into Eq. (29.1) and rearranging terms results in the following equation for the buckling 

stress, σcrit: 

 

𝜎𝑐𝑟𝑖𝑡 =
𝜋2𝐸

12
(
𝑡

𝐿
)
2

(29.2) 

 

Consider the plate shown in Fig. 29.2 which is subjected to a horizontal compression stress which acts along its left 

and right faces. In addition to the restraints on its two horizontal edges, the two vertical sides of the plate are restrained 

from moving in the out-of-plane direction. For this scenario, if the width of the plate, b, is larger than its unrestrained 

length L, then the required stress to buckle the plate will be equal to the following: 

 

𝜎𝑐𝑟𝑖𝑡 =
𝑘𝜋2𝐸

12(1 − 𝜇2)
(
𝑡

𝑏
)
2

 (29.3) 

 

Eq. (29.3) is the solution to a fourth order partial differential equation for the displaced shape of a thin plate subjected 

to compressive stresses. This equation, whose solution was formulated by the American-Russian-Ukrainian engineer 

Stephen Timoshenko, is a two-dimensional extension of Euler’s equation for slender one-dimensional members 

buckling under compressive loads. Although the derivation of the solution is beyond the scope of CIV102, the key 

idea is that k depends on the applied loading conditions (i.e., distribution of compressive stresses) and the boundary 

conditions (i.e., how the edges of the plate are restrained from moving).  

 

 

 
Fig. 29.1 – Rectangular plate loaded in compression with 

no restraints on the sides 

 

Note: μ is the Poisson’s ratio of the material, which is a 

measure of how much a material deforms in the directions 

orthogonal to an applied load. For example, for a 2-D 

material which is being stressed in the x-direction, the 

transverse strain εy is equal to: 

 

𝜀𝑦 = −𝜇𝜀𝑥 = −𝜇
𝜎𝑥
𝐸
 (29.4) 

 

Because the vertical surfaces are restrained from moving, εy 

is equal to zero. This means that an additional y-direction 

stress must be provided to make the net strain equal to zero: 

 
𝜎𝑦 = −𝜀𝑦𝐸 = 𝜇𝜎𝑥  (29.5) 

 

This produces a carryover effect in the x-direction, reducing 

the longitudinal strain εx to be the following: 

 

𝜀𝑥 =
𝜎𝑥(1 − 𝜇

2)

𝐸
 (29.6) 
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Fig. 29.2 – Rectangular plate loaded in compression and restrained along its two horizontal edges. 

 

Plate Buckling Equations: 

For the plate shown in Fig. 29.2 whose sides are restrained from movement both in and out of plane, the solution to 

the buckling coefficient k is the following equation:  

 

𝑘 = (
1

𝑛
⋅
𝐿

𝑏
+ 𝑛

𝑏

𝐿
)
2

 (29.7) 

 

In Eq. (29.7), n is the number of half cycles which the buckled plate assumes, which is similar to Euler’s solution for 

the buckled shape of one-dimensional struts. This equation is plotted in Fig. 29.3, and although it assumes a wide 

range of values for different values of L/b and n, the lowest possible value is k = 4. Therefore, a reasonable lower 

bound of the buckling stress which is appropriate for design is: 

 

𝜎𝑐𝑟𝑖𝑡 =
4𝜋2𝐸

12(1 − 𝜇2)
(
𝑡

𝑏
)
2

 (29.8) 

 

Fig. 29.4 shows a rectangular plate which is loaded with a constant compressive stress on its vertical boundaries like 

the one shown Fig. 29.2. However, only one edge is restrained from moving while the other edge is free to move. In 

this situation, the free edge greatly weakens the plate under compressive stresses, and it fails at a stress of: 

 

𝜎𝑐𝑟𝑖𝑡 =
0.425𝜋2𝐸

12(1 − 𝜇2)
(
𝑡

𝑏
)
2

 (29.9) 

 

 

This factor, (1-μ2), therefore appears in the plate buckling 

equation to account for the extra rigidity provided by the 

restrained edges and the Poisson effect.  

 

 
Fig. 29.3 – Plot of k values for different L/b and n values 
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Fig. 29.4 - Rectangular plate loaded in compression with only one restrained horizontal edge. 

 

Fig. 29.5 show a rectangular plate which, unlike the ones shown in Figs. 29.2 and 29.4, carries compressive stresses 

which vary linearly from zero to a maximum on each side. The magnitude of the maximum stress which causes 

buckling is:  

𝜎𝑐𝑟𝑖𝑡 =
6𝜋2𝐸

12(1 − 𝜇2)
(
𝑡

𝑏
)
2

 (29.10) 

 

High shear stresses carried by thin plates can also cause buckling due to the diagonal compressive stresses which are 

caused by shear. The shear stress which causes a thin plate to buckle is: 

 

𝜏𝑐𝑟𝑖𝑡 =
5𝜋2𝐸

12(1 − 𝜇2)
((
𝑡

ℎ
)
2

+ (
𝑡

𝑎
)
2

) (29.11) 

 

In Eq. (29.11), h is the height of the plate, and a is the spacing between vertical stiffeners which prevent the plate 

from moving in the out-of-plane direction. These terms are illustrated in Fig. 29.6. 

 

Summary of Plate Buckling Equations 

Fig. 29.7 contains a complete summary of the buckling stresses for the four situations discussed in Eqs. (29.8) to 

(29.11). The figure shows the various situations in which they can be used in the design of thin-walled box girder. 

The first two equations apply to the flange which is in compression due to the flexural compression. The compressive 

stresses from the moment may also cause the webs to buckle; the third equation can be used to predict when this might 

happen. Finally, the fourth equation should be used to determine if the shear stresses cause the webs to buckle. The 

application of these examples in design are discussed in more detail in Lecture 30.  

 

 

 

 

 

 

 

 
Fig. 29.5 - Rectangular plate loaded in compression and 

restrained on its two horizontal edges, but loaded with 

linearly varying compressive stresses 

 

 
Fig. 29.6 - Rectangular plate subjected to shear stresses, 

with a height of h. The plate is restrained from buckling in 

the out-of-plane direction by vertical stiffeners which are 

spaced apart by a distance a. 
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Fig. 29.7 – Summary of plate buckling equations used in the design  

of a thin-walled box girder. 

CIV102H1F CIV102 Course Notes September 2021 

        

 

127 

 

Lecture 30 – Design of a Thin-Walled Box Girder 
Overview 

In this chapter, the procedures described in the previous lectures are summarized and applied to the design of a thin-

walled box girder. Failures associated with both failure of the materials and buckling the thin plates are considered.  

 

Basic Design Considerations 

Consider the simply supported thin-walled box girder shown in Fig. 30.1 which is subjected to a single point load at 

its midspan. It is subjected to a constant shear force over its entire length and bending moments which linearly increase 

to a maximum at the midspan.  

 
Fig. 30.1 – Example of a thin-walled box girder. Elevation (left) and cross section (right) views. 

 

If the tensile strength of the material, σult
+, the compressive strength of the material, σult

-, the shear strength of the 

material, τult, and the shear strength of the material used to fasten the walls together, τm, are known, then there are 

four modes of material failure which are summarized in Table 30.1. 

 

The design of thin-walled structures must also consider the possibility of buckling of the walls. Recall from Lecture 

15 that when a structure is subjected to compressive stresses, it will fail at the lower of the ultimate compressive stress 

or the critical buckling stress: 

 

𝜎fail = min{𝜎𝑢𝑙𝑡
− , 𝜎𝑐𝑟𝑖𝑡} (30.1) 

 

When designing struts for compression, we used the critical buckling stress, σcrit, as the Euler buckling stress. For the 

two-dimensional plates which make up the walls of a thin-walled box girder, σcrit is instead taken as the appropriate 

plate buckling equation from Lecture 29. 

 

Table 30.1 – Summary of material failure modes 

No. Failure Mode Failure Condition Relevant Design Equation 

1 Tensile failure of walls 𝜎 = 𝜎𝑢𝑙𝑡
+  

𝜎 =
𝑀𝑦

𝐼
 

2 Compressive failure of walls 𝜎 = 𝜎𝑢𝑙𝑡
−  

3 Shear failure of walls 𝜏 = 𝜏𝑢𝑙𝑡 
𝜏 =

𝑉𝑄

𝐼𝑏
 

4 Shear failure of fastening material 𝜏 = 𝜏𝑚 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Some examples of fastening materials include glue, 

screws, bolts, or nails.  
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Table 30.2 – Summary of plate buckling failure modes 

No. Failure Mode Failure Condition Relevant Design Equation 

5 
Buckling of the compressive flange 

between the webs 
𝜎 =

4𝜋2𝐸

12(1 − 𝜇2)
(
𝑡

𝑏
)
2

 

𝜎 =
𝑀𝑦

𝐼
 6 

Buckling of the tips of the 

compressive flange  
𝜎 =

0.425𝜋2𝐸

12(1 − 𝜇2)
(
𝑡

𝑏
)
2

 

7 
Buckling of the webs due to the 

flexural stresses 
𝜎 =

6𝜋2𝐸

12(1 − 𝜇2)
(
𝑡

𝑏
)
2

 

8 Shear buckling of the webs 𝜏 =
5𝜋2𝐸

12(1 − 𝜇2)
((
𝑡

ℎ
)
2

+ (
𝑡

𝑎
)
2

) 𝜏 =
𝑉𝑄

𝐼𝑏
 

 

As noted in Lecture 29, large shear stresses can also cause the thin plates to buckle due to the resulting diagonal 

compressive stresses. Therefore, the walls will fail at the lower of the shear strength or the critical shear buckling 

stress: 

 

𝜏fail = min{𝜏𝑢𝑙𝑡 , 𝜏𝑐𝑟𝑖𝑡}  (30.2) 
 

Including the additional buckling considerations results in the four more possible failure modes which must be 

considered in the design of the box girder, which are summarized in Table 30.2. 

 

To illustrate the design process, we will try to determine the lowest value of P which causes our example bridge to 

fail. To do this, we will express the maximum shear force and bending moments in terms of P and substitute these 

relationships into the appropriate design equations: 

 

𝑉 =
𝑃

2
 (30.3) 

 

𝑀 =
𝑃𝐿

4
 (30.4) 

 

Flexural and Shear Strength 

The most straightforward modes of failure are associated with tensile and compressive failures caused by flexure. 

Combining Navier’s equation with Eq. (30.4) and noting the top of the girder is in compression and bottom of the 

girder is in tension results in the following values of P causing failure. Note that the subscripts on P correspond to the 

failure modes described in Tables 30.1 and 30.2.  
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Fig. 30.2 – Calculation of Q to determine the shear stresses in the web (left) and in the glue (right). 

 

𝜎𝑢𝑙𝑡
+ =

(
𝑃1𝐿
4
) 𝑦𝑏𝑜𝑡

𝐼
→ 𝑃1 = 4

𝜎𝑢𝑙𝑡
+ 𝐼

𝐿𝑦𝑏𝑜𝑡
 (30.5) 

 

𝜎𝑢𝑙𝑡
− =

(
𝑃2𝐿
4
) 𝑦𝑡𝑜𝑝

𝐼
→ 𝑃2 = 4

𝜎𝑢𝑙𝑡
− 𝐼

𝐿𝑦𝑡𝑜𝑝
 (30.6) 

 

The shear failures of the webs or the fastening material can be determined by using Jourawski’s equation and 

calculating the appropriate values of Q and b. For the box girder being considered in this example, which is glued 

together, the areas and distances used to calculate Q and b are shown in Fig. 30.2. Using these values, the forces 

causing the shear failures of the web material and glue respectively are: 

 

𝜏𝑢𝑙𝑡 =
(
𝑃3
2
)𝑄𝑐𝑒𝑛

𝐼𝑏𝑐𝑒𝑛
→ 𝑃3 = 2

𝜏𝑢𝑙𝑡𝐼𝑏𝑐𝑒𝑛
𝑄𝑐𝑒𝑛

 (30.7) 

 

𝜏𝑚 =
(
𝑃4
2
)𝑄𝑔𝑙𝑢𝑒

𝐼𝑏𝑔𝑙𝑢𝑒
→ 𝑃4 = 2

𝜏𝑚𝐼𝑏𝑔𝑙𝑢𝑒

𝑄𝑔𝑙𝑢𝑒
 (30.8) 

 

 

Failure Modes Associated with Plate Buckling 

Calculating the loads which cause the structure to fail due to plate buckling is a matter of identifying which parts of 

the structure are carrying compressive (or shear) stresses, and then selecting the appropriate equation based on the 

distribution of these stresses and how the plate is restrained if applicable.  
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Fig. 30.3 – Buckling of the flange between the two webs. Top (left) and cross section (right) views. 

 

Consider the region of the compression flange shown in Fig. 30.3 which is located between the two webs. Because 

the flange is located at constant height above the centroidal axis, the flange experiences uniform compressive stresses 

along its width from the bending moment. The webs, which are securely fastened to the flange from below, provide a 

restraint which prevents the region between the webs to move up or down. These boundary conditions suggest that 

the plate buckling equation with a coefficient of k = 4 is appropriate for determining when failure occurs. Therefore, 

failure of this region of the bridge takes place at the following load: 

 

4𝜋2𝐸

12(1 − 𝜇2)
(
𝑡flange

𝑏𝑖𝑛
)
2

=
(
𝑃5𝐿
4
) 𝑦𝑡𝑜𝑝

𝐼
→ 𝑃5 =

16𝜋2𝐸𝐼

12𝐿𝑦𝑡𝑜𝑝(1 − 𝜇
2)
(
𝑡flange

𝑏𝑖𝑛
)
2

(30.9) 

 

 
Fig. 30.4 – Buckling of the free edges of the flange. Top (left) and cross section (right) views. 

 

The tips of the flange, shown in Fig. 30.4, may also buckle due to the flexural compressive stresses. Like the flange 

between the webs, they are also subjected to uniform stresses over their width. However, they have a free edge on one 

side which can move up or down, meaning the plate buckling equation with a coefficient of k = 0.425 is more 

appropriate for determining their strength. Therefore, the load causing these tips to buckle, P6, is equal to: 

 

0.4254𝜋2𝐸

12(1 − 𝜇2)
(
𝑡flange

𝑏𝑜𝑢𝑡
)
2

=
(
𝑃6𝐿
4
) 𝑦𝑡𝑜𝑝

𝐼
→ 𝑃6 =

1.7𝜋2𝐸𝐼

12𝐿𝑦𝑡𝑜𝑝(1 − 𝜇
2)
(
𝑡flange

𝑏𝑜𝑢𝑡
)
2

(30.10) 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Recall that the compressive stresses caused by bending 

do not vary over the width of the member because they are 

only a function of the vertical distance from the centroidal 

axis, y. 
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Fig. 30.5 – Buckling of the webs due to flexural compressive stresses. Side (left) and cross section (right) views. 

 

The flexural compressive stresses can also cause the webs of the structure to buckle. These webs, which are oriented 

vertically, will experience compressive stresses which increase linearly from zero at the centroidal axis to a maximum 

at the top of the web. This linear gradient of stresses suggests that the plate buckling with the coefficient k = 6 is the 

most appropriate. The load causing these webs to buckle, P7, is therefore equal to: 

 

6𝜋2𝐸

12(1 − 𝜇2)
(
𝑏𝑤𝑒𝑏
𝑦𝑡𝑜𝑝

)

2

=
(
𝑃7𝐿
4
)𝑦𝑡𝑜𝑝

𝐼
→ 𝑃7 =

24𝜋2𝐸𝐼

12𝐿𝑦𝑡𝑜𝑝(1 − 𝜇
2)
(
𝑏𝑤𝑒𝑏
𝑦𝑡𝑜𝑝

)

2

 (30.11) 

 

 
Fig. 30.6 – Buckling of the webs due to shear stresses. Side (left) and cross section (right) views. 

 

Choosing the appropriate equation to determine when the webs buckle in shear is straightforward because only one of 

the four plate buckling equations is related to the shear stresses. Using Jourawski’s equation and equating the critical 

shear buckling stress to the shear stresses in the web results in the following expression for P8, where a is the spacing 

of stiffeners which restrain the web from moving side to side: 

 

5𝜋2𝐸

12(1 − 𝜇2)
((
𝑏𝑤𝑒𝑏
ℎ𝑤𝑒𝑏

)
2

+ (
𝑏𝑤𝑒𝑏
𝑎
)
2

) =
(
𝑃8
2
)𝑄𝑐𝑒𝑛

2𝐼𝑏𝑤𝑒𝑏
→ 𝑃8 =

20𝜋2𝐸𝐼𝑏𝑤𝑒𝑏
3

12𝑄𝑐𝑒𝑛(1 − 𝜇
2)
((

1

ℎ𝑤𝑒𝑏
)
2

+ (
1

𝑎
)
2

) (30.12) 

 

The strength of the structure is governed by the lowest value of P obtained from the eight calculations. Note that under 

more complex loading and support conditions, more calculations will be required to obtain the failure load.  

 

 

 

 

 

 

 

 

 

 

 

 

Note: Even when there is more than one web in the structure, 

the width of one web is used in the plate buckling equations. 

This is because the equations are used to describe the 

strength of each individual plate which may buckle 

independently of each other.   

 

Note: In Eq. 30.11, the value of y used to calculate the 

flexural stresses should be ytop – tflange. If the thickness of the 

flange is small compared to ytop, then the following 

approximation is appropriate: 

 

𝑡flange ≪ 𝑦𝑡𝑜𝑝 → 𝑦𝑡𝑜𝑝 ≈ 𝑦𝑡𝑜𝑝 − 𝑡flange 

 

 

 

 

 

 

 

Note: In design, appropriate factors of safety must be used 

to determine the lowest value of P which can be safely 

resisted by the structure.  

CIV102H1F CIV102 Course Notes September 2021 

        

 

132 

 

Lecture 31 – Building with Stone and Concrete 
Overview 

In this chapter, the unique characteristics of stone and concrete structures are discussed. Stone-like materials are 

typically strong in compression, have low tensile strength, and have significant self-weight. The theory used to design 

of arches and towers is presented.  

 

Unique Characteristics of Stone 

The existence of stone structures which date back hundreds or thousands of years is evidence of the many strengths 

of these materials. Unlike organic materials like wood, or metallic materials like iron, stone is very durable and capable 

of surviving for many years under harsh weather conditions. An example of a stone structure which has survived over 

the centuries is the Alcántara Bridge in Spain, shown in Fig. 31.1, which was built in 106 AD, almost two thousand 

years ago.  

 

Although stone is strong and durable, it is difficult to transport, and shape. Furthermore, stones suitable for 

construction are only found in certain geographical regions. A common alternative is to instead use concrete, a Roman 

invention, which is manmade stone which addresses these shortcomings of natural stone. Concrete, which is made by 

mixing cement, water, air, fine aggregate (i.e., sand) and coarse aggregate (i.e., larger rocks), can be readily formed 

into any shape. Transporting its component ingredients is comparatively easy, making it a versatile material commonly 

used in modern construction. The Romans, however, were also experts of using concrete for their structures. An 

example of a Roman structure which demonstrates their mastery of the material is the Pantheon in Rome, which was 

built in 125 AD and still stands despite many wars and natural disasters occurring during its lifetime.  

 

 
Fig. 31.2 – Pantheon in Rome. 

 

Stone-like materials, like concrete, limestone, granite, etc., share many common material properties. They are heavy 

and tend to be formed into large structures, resulting in a substantial self-weight which must be included in their 

design. They tend to be strong in compression but weak in tension, and when they fail in tension, they exhibit little to 

no ductility.  Stone structures have essentially the opposite characteristics of slender wires used to carry tensile loads, 

as they favour compression instead of tension, they are heavy instead of light, and they are brittle instead of tough.  

 

  

 
Fig. 31.1 - Alcántara Bridge in Spain. 

 

Note: Masonry construction refers to the use of stones joined 

by mortar to build structures. The mortar is used to position 

the stone blocks together and fill in gaps as needed.  
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True Theory of Arches 

One common structural system used in buildings and bridges which uses stone is the arch. When designing arches, 

the shape must allow the applied loads from above to travel to the supports below without causing any tensile stresses 

in the structure. Although the Romans were experts at building arches, Robert Hooke later summarized his true theory 

of arches with the following statement:  

 

“As hangs a flexible cable, so, inverted, stand the touching pieces of an arch” 

 

Hooke’s theory, shown in Fig. 31.3, illustrates the idea shape of an arch when supporting one, two, three, or four point 

loads. Under a uniformly distributed load, the ideal shape becomes a parabola, the same way a suspension bridge 

carries the uniformly distributed weight of a deck using a parabolic cable. The famous Catalan architect, Antoni Gaudí, 

made use of Hooke’s theory of arches when designing his stone cathedrals. Fig. 31.4 shows one of his string models 

that he used to determine the form of his buildings.  

 

 
Fig. 31.4 – Model used by Antoni Gaudí to design stone cathedrals. The built shape was obtained by flipping the 

model upside down. 

 

Design for Combined Axial Load and Bending Moment 

Although the poor tensile strength of stone reduces the ability of masonry structures to resist large bending moments, 

their substantial self-weight allows some structures, like towers, to overcome this weakness. Consider the tower shown 

in Fig. 31.5, which is subjected to large horizontal forces from a severe windstorm. At the base of the structure, there 

must be a significant bending moment, Mbase, to prevent the tower from tipping over, and a high horizontal shear 

force, Vbase, to prevent it from sliding. There must also be a large vertical reaction force provided by the ground to 

support the self-weight of the tower, which places the tower in compression.  

 
Fig. 31.3 – Hooke’s theory of arches. 
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Fig. 31.5 – Stone tower subjected to high wind forces (left) and free body diagram at the base (right). 

 

At the bottom of the tower, the axial force, N, is equal to the weight of the tower above. Using the unit density of the 

material, γ, the stress at the base caused by the axial load, σN, can be calculated to be: 

 

𝜎𝑁 = −
𝑁

𝐴
= −

𝑉𝑜𝛾

𝐴
 (31.1) 

 

In Eq. (31.1), Vo is the volume of the tower, and the minus sign indicates that these stresses are compressive. In 

addition to the stress from the self-weight, there will also be stresses at the base of the tower due to the presence of 

the bending moment. These stresses, σM, can be calculated by using Navier’s equation: 

 

𝜎𝑀 =
𝑀𝑦

𝐼
 (31.2) 

 

The total stress in the tower at its base can be obtained by simply adding the two effects together if it is linear elastic. 

Therefore, the stress on the side where the wind blows, which would normally be in tension, is: 

 

𝜎 = −
𝑁

𝐴
+
𝑀𝑦left
𝐼

 (31.3) 

 

And the stress on the side opposite to the wind, which would normally be in compression, is:  

 

𝜎 = −
𝑁

𝐴
−
𝑀𝑦right

𝐼
 (31.4) 

 

Although the tower is subjected to a high moment, the stresses may remain compressive if the tower is heavy enough. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: If the cross-sectional area of the tower is constant over 

its height, h, then the stress at the base can be calculated as: 

 

𝜎 =
𝑉𝑜𝛾

𝐴
=
𝐴ℎ𝛾

𝐴
= ℎ𝛾 

 

Note: Due to the axial load, the stress in the member at the 

centroidal axis will no longer be equal to zero. This can be 

shown in Fig. 31.6. 

 

 
Fig. 31.6 – Stress distribution under combined axial load 

and bending moment 
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Lecture 32 – Reinforced Concrete: Material Properties 
Overview 

In this chapter, the material properties of concrete, steel, and reinforced concrete are discussed.   

 

Reinforced Concrete  

Concrete is the most commonly used building material in the world, having applications in the construction of roads, 

bridges, buildings, dams, tunnels and more. Besides being both strong and durable, concrete can be formed into any 

shape, offering a versatility which cannot be matched by other materials like steel and timber.  

 

Although concrete, being a stone-like material, has poor tensile strength, this weakness can be addressed by providing 

reinforcement in the form of steel bars which are cast into the concrete. Concrete containing internal reinforcement is 

typically referred to as reinforced concrete, while concrete without reinforcement is typically referred to as plain 

concrete.  

 

Material Properties of Concrete  

The stress-strain response of concrete under axial load is shown in Fig. 32.2. In compression, the stress-strain response 

is linear until a stress of approximately 40% of the ultimate compressive stress is reached; after this, the behaviour is 

highly nonlinear. In tension, the behaviour is linear elastic until the concrete fails by cracking, which typically occurs 

at a stress around 2 to 3 MPa.  

 
Fig. 32.2 – Stress-strain response of plain concrete under axial load. 

 

When building concrete structures, it is customary to cast small concrete cylinders made from the same concrete, 

which are tested later to measure the material properties of the concrete present in the actual structure. These cylinders 

are tested in compression to determine the compressive strength of the concrete, fc’, which is then correlated to other 

 

 
Fig. 32.1 – Large reinforced concrete beam in the Bahen 

Centre for Information Technology at the University of 

Toronto. Details of the internal reinforcement are shown. 

 

 

Note: Although steel is typically used as reinforcement, 

other materials can be used as well. Common alternatives 

include using glass fibre reinforced polymer (GFRP) bars 

or embedding steel or polymer fibers into the concrete to 

create Fiber Reinforced Concrete (FRC). 

 

 

 

 

 

 

 

Note: The notation for stresses for concrete structures 

differs from the notation used for the rest of the course. 

Axial stresses are represented as f and shear stresses are 

represented as v, instead of σ and τ respectively.  
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properties using empirical equations. Concrete which has a compressive strength of less than 40 MPa is normal 

strength concrete. Special circumstances may necessitate the use of high strength concrete, which has a higher 

compressive strength that can exceed 100 MPa.   

 

Given the concrete compressive strength, fc’, a common empirical equation to estimate the tensile strength of the 

concrete, ft’, is: 

 

𝑓𝑡
′ = 0.33√𝑓𝑐

′ (32.1) 

 

Like the tensile strength, the Young’s modulus of the concrete, Ec, can also be correlated with the compressive strength 

of the concrete. Although there are many equations in the literature which express Ec as a function of fc’, a common 

expression used for concrete whose strength is 40 MPa or less is: 

 

𝐸𝑐 = 4730√𝑓𝑐
′ (32.2) 

 

When using Eq. (32.1) and (32.2), ft’ and Ec will be in units of MPa if fc’ is also in MPa.  

 

Material Properties of Reinforcing Steel 

To reinforce concrete members, steel reinforcing bars are bent and tied together to form complex, interlocking cages 

like the one shown in Fig. 32.3. The stress-strain response of these steel reinforcing bars under axial load is shown in 

Fig. 32.4. Reinforcing steel bars, colloquially referred to as rebars, are made of mild steel and are manufactured to 

have surface deformations to help anchor them into the surrounding concrete. The Young’s modulus of the steel is 

taken as Es = 200,000 MPa, and the yield strength of Canadian reinforcing bars is typically fy = 400 MPa in both 

tension and compression. 

 

 
Fig. 32.4 – Stress-strain response of reinforcing steel under axial load. 

 

 

 

 

 

Note: Performing tensile tests on stone-like materials is very 

difficult. For this reason, it is more common to correlate the 

cracking stress with the compressive strength. 

 

 

Note: Another equation for Ec which appeared in previous 

versions of the CIV102 notes is the following: 

 

𝐸𝑐 = 3320√𝑓𝑐
′ + 6900 (32.3) 

 

When solving reinforced concrete problems which do not 

provide Ec in the question, use Eq. (32.2) to estimate Ec if 

needed. 

 

Note: Although Es is 200,000 MPa for all types of steel, 

different countries use different steel strengths. For 

example, in USA, it is customary to use steel which has a 

yield strength of 60 ksi (414 MPa). 

 

 

 
Fig. 32.3 – Reinforcement cage comprised of rebars which 

are bent and tied together. 
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Table 32.1 – Common Canadian Reinforcing Bar Information 

Designation 
Linear Density 

(kg/m) 

Nominal Diameter 

(mm) 

Cross-Sectional Area 

(mm2) 

10M 0.785 11.3 100 

15M 1.570 16.0 200 

20M 2.355 19.6 300 

25M 3.925 25.2 500 

30M 5.495 29.9 700 

35M 7.850 35.7 1000 

45M 11.775 43.7 1500 

55M 19.625 56.4 2500 

 

Steel producers fabricate rebar into many standardized sizes. Table 32.1, which is also found in Appendix G, shows 

the common types of rebar which are available in Canada. The bar number roughly refers to the diameter of the bar, 

although the actual diameter is usually slightly larger. The smaller bars (10M and 15M) are usually used for 

reinforcement which needs to be bent into compact shapes, while the larger bars are more difficult to bend and are 

usually used where straight bars are needed. 

 

Material Properties of Reinforced Concrete 

Fig. 32.4 shows the stress-strain response of a concrete member which is reinforced with steel bars. Its response under 

compression is similar to that of plain concrete because the steel only provides a small increase in compressive 

strength. In tension however, the response is substantially different, especially after the concrete cracks. When this 

occurs, the tensile force is carried by the steel instead of by the cracked concrete, which allows substantial tensile 

forces to be carried by the material. The response of the material becomes also ductile because failure in tension occurs 

due to the steel yielding instead of the concrete cracking. The presence of steel also affects the pattern of cracking and 

the sizes of the individual cracks. As the amount of steel in the concrete increases, more cracks form which have 

smaller widths because the elongation of the member is distributed over many cracks, instead of being localized at 

one location.  

 

 
Fig. 32.6 – Heavily reinforced coupling beam tested at the University of Toronto by Fischer et al. Electronic 

measuring gauges are attached to the surface of the concrete, and labels indicate the measured crack widths in mm. 

 
Fig. 32.5 – Stress-strain response of reinforced concrete 

under axial load. 
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32.7 – Large slab strip tested at the University of Toronto by Quach et al. The right-hand side contained no vertical 

reinforcement and failed in a brittle manner. 

 

The heavily reinforced beam shown in Fig. 32.6 illustrates the ability of internal reinforcement to improve the 

behaviour of concrete members after cracking. This beam, loaded under moment and shear, was capable of carrying 

significant forces after cracking. Because large amounts of steel were used to reinforce it, the shear and flexural 

deformations are distributed over many narrow cracks. This member failed in a ductile manner once the steel began 

to yield.  

 

Fig. 32.7 shows a reinforced concrete beam built without vertical reinforcement in its East (right) span. Because there 

was no vertical reinforcement, the deformations caused by the shear forces were concentrated at a single wide crack, 

which ultimately caused its failure. This member failed in a brittle manner once widening and sliding along the crack 

reduced its load-carrying capacity to be less than the applied load.  

 

The benefits of using steel reinforcement in concrete can be summarized below: 

i. It provides tensile capacity in a member after the concrete cracks. 

ii. It controls the crack widths after cracking occurs, so that tensile deformations are distributed over multiple 

narrow cracks, instead of fewer wide cracks. 

 

In design, it is customary to use different factors of safety associated with the stresses in the concrete and in the steel. 

Concrete, whose strength can be affected by factors like how it was cast, variances in the mix and the curing 

environment, is typically associated with a larger factor of safety compared to steel, which is a typically manufactured 

in controlled conditions. In CIV102, we will account for these by using partial safety factors to reduce the strength 

of concrete by 0.5 and reduce the strength of steel by 0.6 when designing reinforced concrete members. 
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Lecture 33 – Reinforced Concrete Members – Design for Flexure 
Overview 

In this chapter, the behaviour of reinforced concrete structures subjected to bending moments is described. A simple 

procedure which can be used to design the flexural reinforcement or estimate the flexural strength of a reinforced 

concrete member is presented.  

 

Overview of Flexural Behaviour 

The response of a reinforced concrete member subjected to bending moments can be described as having three distinct 

phases, which are shown in Fig. 33.1. For small loads, the stresses in the concrete will be low and the member will 

exhibit linear elastic behaviour. During this portion of the member’s life, the presence of the reinforcing steel has little 

influence of the flexural response, and Navier’s equation can be used to determine the stresses in the concrete.  

 

At larger loads, the flexural stresses obtained by using Navier’s equation will exceed the tensile strength of the 

concrete, and vertical cracks will form. After this happens, the member will continue to carry bending moments with 

the concrete carrying the compression forces on one side of the member, and the longitudinal steel reinforcement 

carrying the tension forces on the other side of the member. During this stage, the compressive stresses in the concrete 

and the tensile stresses in the steel are relatively low, and they will both behave in a linear elastic manner. This sort 

of load-carrying mechanism is sometimes referred to as the cracked elastic state of the member.  

 

Under larger loads, the reinforcement will begin to yield, and the concrete will begin to crush, which results in a 

nonlinear response being observed. If the steel yields before the concrete crushes, then the failure mode will be ductile, 

and large deformations will occur before the beam finally breaks. If the opposite is true, then the member may fail 

more suddenly. Analyzing the nonlinear behaviour requires more advanced tools and is beyond the scope of CIV102. 

 

The primary task involved when designing for flexure is to determine how much longitudinal steel is needed to carry 

the bending moments. This steel is provided on the side of the beam experiencing tension, so that the tensile forces in 

the steel and the compressive forces in the concrete together resist the applied moments.  

 

Cracked Elastic Response 

To analyze the flexural behaviour of a reinforced concrete member after it has cracked, the following assumptions are 

made: 

i. Plane sections remain plane, and hence there are longitudinal strains which vary linearly over the height of 

the member 

ii. The concrete cannot carry any tensile stresses  

iii. The steel is perfectly bonded to the concrete, so that the concrete and steel experience the same strain at every 

point 

 

Consider the cracked reinforced concrete beam shown in Fig. 33.2 which bends as it supports the applied loads. The 

bending moments carried by the member causes vertical cracks to form on the bottom of the beam. To resist the 

applied loads after cracking occurs, longitudinal steel reinforcement is required. The steel carrying the flexural tension 

has a total area of As and the distance from the extreme compression fibre of the beam to the centroid of this 

reinforcement is equal to d.  

 

 
Fig. 33.1 – Typical load-displacement plot of a reinforced 

concrete beam subjected to bending. 

 

 

 

 
Fig. 33.2 – A reinforced concrete beam tested by Garratt et 

al. which failed in flexure. Note the large cracks and 

displacements, as well as the crushed concrete at the top of 

the beam. 
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Fig. 33.3 – Schematic of a cracked reinforced concrete beam subjected to bending moments, showing the 

distribution of strains, stresses and forces.  

 

As the cracked beam curves, there will be longitudinal strains which vary linearly over the height of the member. If 

the curvature, ϕ, is known, then the longitudinal strain, ε, at a distance y from the neutral axis will be equal to: 

 

𝜀 = 𝜙𝑦 (33.1) 
 

Although this is the same equation which we used in Lecture 10 for elastic beams, the neutral axis of the cracked 

member will not align with the centroidal axis of the cross section because the cracked concrete cannot carry any 

tensile stresses. To determine the location of the new neutral axis of the cracked member, we need to find the 

corresponding strain conditions which guarantee that the net axial force in the member is zero.  

 

If we define the distance from the extreme compression fibre to the neutral axis as kd, then we can express the 

curvature of the section as: 

 

𝜙 =
𝜀𝑐,𝑡𝑜𝑝

𝑘𝑑
=
𝜀𝑐,𝑡𝑜𝑝 + 𝜀𝑠

𝑑
 (33.2) 

 

In Eq. (33.2), εc,top is the concrete strain at the top of the section, and εs is the strain in the steel, which is located a 

distance d from the top of the section. Rearranging Eq. (33.2) results in the following equations for these strains in 

terms of the curvature and kd: 

 
𝜀𝑐,𝑡𝑜𝑝 = 𝜙𝑘𝑑 (33.3) 

 

𝜀𝑠 = 𝜙𝑑(1 − 𝑘) (33.4) 
 

Using Hooke’s law, the stresses in the concrete and steel can be obtained once these strains are known. The concrete 

carries compressive stresses which increase linearly from 0 at the depth of compression to a maximum at the top of 

the section, and the steel carries a tensile stress at the location of the bars. The net compressive force in the concrete, 

Cc, can be obtained by integrating the concrete stresses over the cross section, resulting in: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Here, the strains in the compression region, like εc,top, 

are taken as positive numbers even though it is understood 

that they are compressive. 
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𝐶𝑐 = ∫ 𝑓𝑐𝑑𝐴𝑐
𝐴𝑐

= ∫ 𝐸𝑐𝜀𝑐𝑑𝐴𝑐
𝐴𝑐

=
1

2
𝑏𝑘𝑑𝐸𝑐𝜀𝑐,𝑡𝑜𝑝 (33.5) 

 

The net tensile force in the steel, Ts, can be obtained by multiplying the steel stresses over the cross section, which 

results in: 

 

𝑇𝑠 = 𝑓𝑠𝐴𝑠 = 𝐸𝑠𝜀𝑠𝐴𝑠 (33.6) 
 

For a member subjected to pure bending, there will be no net axial force and therefore the compressive force in the 

concrete must equal to the tensile force carried by the steel. Therefore, setting Eqs. (33.5) and (33.6) to equal each 

other and substituting the expressions for εc,top and εs into the resulting equation yields: 

 
1

2
𝜙𝑏(𝑘𝑑)2𝐸𝑐 = 𝜙𝐸𝑠𝐴𝑠𝑑(1 − 𝑘) (33.7) 

 

Eliminating ϕ from Eq. (33.7) and rearranging terms results in the following quadratic equation for k: 

 
1

2
𝑘2 + 𝑘

𝐸𝑠
𝐸𝑐

𝐴𝑠
𝑏𝑑

−
𝐸𝑠
𝐸𝑐

𝐴𝑠
𝑏𝑑

= 0 (33.8) 

 

We can abbreviate Eq. (33.8) by defining the modular ratio, n, as the following:  

 

𝑛 =
𝐸𝑠
𝐸𝑐
 (33.9) 

 

Furthermore, we will define the quantity of longitudinal reinforcement, ρ, as: 

 

𝜌 =
𝐴𝑠
𝑏𝑑
 (33.10) 

 

Substituting these new quantities into Eq. (33.8) allows it to be rewritten in the following form: 

 
1

2
𝑘2 + 𝑘𝑛𝜌 − 𝑛𝜌 = 0 (33.11) 

 

Solving for Eq. (33.11) using the quadratic equation results in the following equation for k: 

 

𝑘 = √(𝑛𝜌)2 + 2𝑛𝜌 − 𝑛𝜌 (33.12) 

 

Having found the required value of k so that the net axial force carried by the member equals to zero under pure 

moment, the bending moment carried by the member, M, can now be obtained by using fact that the compression 

 
Fig. 33.4 – Definition of b. 

 

Note: b is defined as the width of the of the compression 

side of the member. Therefore, for this T-beam, b is the 

width of the flange when it is carrying positive moments, 

and width of the stem when it is carrying negative moments.  
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force in the concrete, Cc, is equal and opposite to the tension force in the steel, Ts. Together, they form a couple which 

has the following properties: 

 

𝑀 = 𝐶𝑐𝑗𝑑 = 𝑇𝑠𝑗𝑑 (33.13) 
 

In Eq. (33.11), jd is the vertical distance between the compressive and tensile forces and is called the flexural lever 

arm. Because the concrete stresses, are distributed in a triangular pattern over the height kd, the resultant compressive 

force is located at a distance of kd/3 from the top of the member. Therefore, jd is equal to: 

 

𝑗𝑑 = 𝑑 −
1

3
𝑘𝑑 → 𝑗 = 1 −

1

3
𝑘 (33.14) 

 

Knowing the value of the flexural lever arm is important as it provides the necessary link between the bending moment 

carried by the member and the stress in the reinforcement, fs. This relationship can be determined by combining Eqs. 

(33.6) and (33.13):  

 

𝑀 = 𝐴𝑠𝑓𝑠𝑗𝑑 → 𝑓𝑠 =
𝑀

𝐴𝑠𝑗𝑑
(33.15) 

 

If the steel is still linear elastic, the strain in the steel can be obtained by using Hooke’s law and dividing fs by the 

Young’s modulus of steel, Es. Substituting the steel strain into Eq. (33.4), results in the following equation for the 

curvature of the member:  

 

𝜙 =
𝑀

𝐴𝑠𝐸𝑠𝑗𝑑
2(1 − 𝑘)

 (33.16) 

 

Substituting Eq. (33.16) in Eq. (33.3) and multiplying the concrete strain by Ec results in a compact equation for the 

maximum concrete stress when the member is carrying the bending moment: 

 

𝑓𝑐 =
𝑘

1 − 𝑘

𝑀

𝑛𝐴𝑠𝑗𝑑
 (33.15) 

 

Finally, the maximum moment which can be carried by the member if it fails by yielding of the flexural reinforcement 

can be determined if we use Eq. (33.13) and let the steel stress fs equal the yield stress fy: 

 
𝑀𝑦𝑖𝑒𝑙𝑑 = 𝐴𝑠𝑓𝑦𝑗𝑑 (33.16) 
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Design Process Summary 

The following steps outline a procedure for proportioning the longitudinal reinforcement in a beam to safely resist 

bending moments which result from applied loads. 

 

i. Obtain the bending moment diagram and determine the moment which must be resisted by the beam, M. 

ii. Using a provided value of d, estimate k and j to be k = 3/8 and j = 7/8. If it is assumed that the maximum 

allowable tensile stress in the steel is 0.6fy, then the required area of steel is: 

 

𝐴𝑠,𝑚𝑖𝑛 =
𝑀

0.6𝑓𝑦𝑗𝑑
 

 

iii. Using the rebar table in Appendix G, select the number of bars needed so that the area of longitudinal steel, 

As, is greater or equal to As,min. 

iv. Calculate the actual value of k. Recall that n = Es/Ec and ρ = As/bd.  

 

𝑘 = √(𝑛𝜌)2 + 2𝑛𝜌 − 𝑛𝜌 

 

v. Calculate the actual length of the flexural lever arm, jd: 

 

𝑗𝑑 = 𝑑 (1 −
1

3
𝑘) 

 

vi. Check to ensure that the steel stress, fs, does not exceed 0.6fy: 

 

𝑓𝑠 =
𝑀

𝐴𝑠𝑗𝑑
≤ 0.6𝑓𝑦 

 

vii. Check to ensure that the concrete stress, fc, does not exceed 0.5fc’: 

 

𝑓𝑐 =
𝑘

1 − 𝑘

𝑀

𝑛𝐴𝑠𝑗𝑑 
≤ 0.5𝑓𝑐

′ 

 

When checking if a design is safe, only steps i and iv to vii need to be performed.  
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Lecture 34 – Reinforced Concrete Members – Design for Shear 
Overview 

In this chapter, the behaviour of reinforced concrete members subjected to shear is discussed. The Simplified Method 

for shear design in the Canadian concrete design code, CSA A23.3:19, is presented, and its application for both 

designing members for shear and evaluating the shear strength of existing structures is explained. 

 

Historical Background 

Shear stresses in reinforced concrete members can cause failure due to the resulting diagonal tensile and compressive 

stresses. If a member does not contain adequate amounts of shear reinforcement, vertical bars which run perpendicular 

to the longitudinal steel, then it may fail suddenly without obvious signs of distress. The mechanism by which 

reinforced concrete members carry shear is complex, and there have been significant structural failures in the 20 th 

century due to inadequate design and construction practices. Some notable shear failures include the collapse of the 

Sleipner A offshore platform in 1991, which imploded while under construction, leading to an estimated cost of $700 

million (USD), and the collapse of the De la Concorde overpass in 2006, which killed five people and left six others 

with serious injuries. Photos of these collapses are shown in Fig. 34.1. 

 

  
 

Fig. 34.1 – Collapse of the Sleipner A platform (left) and De la Concorde overpass (right).  

The magazine title translates to “From Engineering Cathedral to Concrete Scrap”. 

 

Research work performed at the University of Toronto has led to significant advances in the understanding of how 

reinforced concrete carries shear stresses. Experiments performed on concrete specimens using unique equipment like 

the Panel Element Tester and Shell Element Tester, shown in Fig. 34.2, have led to the development of the Modified 

Compression Field Theory, which serves as the theoretical basis for the Canadian and Australian concrete design 

codes, the fib Model Code 2010 and the American bridge design code.   
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Fig. 34.2 – Panel Element Tester (left) and Shell Element Tester (right) at the University of Toronto. 

 

Overview of Shear Behaviour 

Recall from Lecture 25 that shear stresses in beams cause diagonal compressive and tensile stresses. Because concrete 

has a low tensile strength, these tensile stresses cause diagonal cracks to form. After cracking, the reinforced concrete 

has two basic mechanisms for carrying shear stresses: 

 

i. Aggregate Interlock – shear stresses acting along the crack surfaces, which are rough due to the aggregate 

embedded in the concrete, along with tensile stresses in the longitudinal steel carry tension across the crack. 

ii. Shear Reinforcement – steel reinforcement which is perpendicular to the longitudinal reinforcement carry 

tensile stresses which, along with the tensile stresses in the longitudinal steel, carry tension across the crack. 

 

The first mechanism is the predominant method of carrying shear for members which do not have shear reinforcement 

and its strength is strongly influenced by the width of the cracks which form under shear loading. A close-up photo 

showing interlocking of the aggregate is shown in Fig. 34.3.  

 

 
Fig. 34.3 – Interlocking of aggregate in a concrete member, preventing sliding along the crack. 
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Fig. 34.5 – Derivation of shear stresses in a cracked concrete member. 

 

After cracking, the shear stress distribution no longer follows the shape predicted by Jourawski’s equation because 

the tensile capacity of the concrete is severely reduced. Consider a slice of a beam with a width Δx shown from 

elevation view, like in Fig. 34.5. Recall that the shear force, V, is related to the bending moment M, by:  

 

𝑉 =
𝑑𝑀

𝑑𝑥
 (34.1) 

 

The change in moment leads to an increase in the tensile forces in the longitudinal steel, which is related to the tension 

in the steel, Ts, by the flexural lever arm, jd. Therefore, Eq. (34.1) can be rewritten in terms of the change in tension 

force in the longitudinal steel, ΔTs: 

𝑀 = 𝑇𝑠𝑗𝑑 → 𝑉 =
∆𝑇𝑠𝑗𝑑

∆𝑥
 (34.2) 

 

The change in tension force in the longitudinal steel is due to the shear stresses which act over the area defined by the 

web width, bw, and the length of our slice, Δx. Horizontal equilibrium requires that the shear stresses, v, must be 

defined as: 

 

𝑣𝑏𝑤∆𝑥 = ∆𝑇𝑠 (34.3) 
 

Substituting Eq. (34.2) in Eq. (34.3) and eliminating Δx from the equation results in the following equation for the 

maximum shear stress in a cracked concrete member, which occurs in its web: 

 

𝑣 =
𝑉

𝑏𝑤𝑗𝑑 
 (34.4) 

 

A shear failure in a member occurs when the shear stress exceeds its shear capacity. As previously noted, the shear 

capacity is related to the strength offered by the aggregative interlock, vc, and the shear strength offered by the steel 

shear reinforcement, vs. In heavily reinforced members which contain large amounts of reinforcement, then another 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 34.6 – Effective web width, bw. 

 

Note: the web width may consider adjacent webs, like in the 

case of the double-tee beam shown in Fig. 34.6. 
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possible failure mode is if the diagonal compression from the shear causes crushing to take place. The shear stress 

which causes this to occur, vmax, is defined in the Canadian concrete design code as: 

 

𝑣𝑚𝑎𝑥 = 0.25𝑓𝑐
′ (34.5) 

 

Where fc’ is the compressive strength of the concrete. Putting these concepts together, the shear strength of a member, 

Vr, is equal to strength attributed to the concrete, Vc, plus the strength attributed to the steel, Vs, which must be less 

than Vmax. To provide an adequate factor of safety in design, the terms associated with the concrete strength are also 

multiplied by 0.5, and the terms associated with the steel strength are multiplied by 0.6, which results in the following 

equation: 

 

𝑉𝑟 = 0.5𝑉𝑐 + 0.6𝑉𝑠 ≤ 0.5𝑉𝑚𝑎𝑥  (34.6) 
 

Finally, when designing for shear, the value of the shear force at the location of a reaction force or concentrated point 

load is typically not used. These regions are “disturbed” by local compressive stresses, since the forces tend to 

compress the member in the transverse direction where they are applied. Because shear failures are typically associated 

with diagonal tension, the additional compression helps to prevent a failure from occurring in these regions. Instead, 

the shear force which is located a distance d away from the reaction force or point load is typically used for analysis 

and design, where d is the distance between the longitudinal steel and the compression face of the member as used for 

flexural design. Fig. 34.7 illustrates the shear force which should be used in design.  

 
Fig. 34.7 – Design shear force. 

 

Shear Capacity of Members Without Shear Reinforcement 

Slabs, which are used commonly used in floors or foundations of a building, are often built without shear 

reinforcement. Therefore, their shear strength solely depends on the ability of the concrete to carry stresses across the 

cracks via aggregate interlock. The shear strength is strongly related to how thick the member is, because larger 

members tend to have wider cracks. Since aggregate interlocking becomes less effective as the cracks get larger, the 

shear strength, vc, tends to become smaller as the overall depth of the member increases. This is called the size effect 

and has been observed in experiments done at the University of Toronto and other institutions. Fig. 34.8 shows the 

effect of member depth on predicted shear strength using the Canadian code, as well as the shear strengths of many 

experiments.  

Note: vc and vs correspond to the shear strengths associated 

with the concrete and steel respectively in units of MPa. To 

determine the corresponding shear force, Vc and Vs 

respectively, these quantities should be multiplied by bwjd in 

accordance with Eq. (34.4) 

 

Note: The maximum shear force causing crushing is equal 

to: 

 

𝑉𝑚𝑎𝑥 = 0.25𝑓𝑐
′𝑏𝑤𝑗𝑑 

 

 

 

 

 

 

 
Fig. 34.8 – Size effect for reinforced concrete members 

subjected to shear. The failure stress of a member without 

shear reinforcement decreases as it becomes deeper. 
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The equation for the shear strength of members without shear reinforcement is given in Eq. (34.7). This equation is 

based on the Modified Compression Field Theory and is used for shear design in Canada.  

 

𝑉𝑐 = 𝑣𝑐𝑏𝑤𝑗𝑑 =
230√𝑓𝑐

′

1000 + 0.9𝑑
𝑏𝑤𝑗𝑑 (34.7) 

 

In Eq. (34.7), Vc is the shear strength in units of force, fc’ is the compressive strength of the concrete in MPa, d is the 

effective depth in mm, bw is the width of the web and jd is the flexural lever arm.  

 

Shear Capacity of Members Containing Shear Reinforcement 

Shear reinforcement are bars which are perpendicular to the direction of the longitudinal reinforcement. They are 

commonly inserted into reinforced concrete members by bending bars to form hoops or U-shapes, which are 

commonly referred to as stirrups in North America. Some examples of shear reinforcement are shown in Fig. 34.9. 

The area of shear reinforcement, Av, refers to the total cross-sectional area of the bars which are oriented vertically, 

and the primary task of an engineer is to determine their spacing to ensure that the member has adequate shear strength.  

 
Fig 34.9 – Types of shear reinforcement and corresponding values of Av. 

 

Providing shear reinforcement has two benefits: the bars themselves provide additional shear strength, Vs, and they 

control the width of the diagonal cracks, which improves the aggregate interlocking strength and hence increases Vc 

as well. The shear strength provided by the stirrups can be described by visualizing how the stresses in a cracked 

reinforced concrete beam are carried, with fields of diagonal compression in the concrete being equilibrated by the 

tensile stresses in the shear reinforcement, which have an area of Av and spacing s. This is shown in the left diagram 

in Fig. 34.10.  

  
Fig. 34.10 – Diagonal stress fields in a cracked reinforced concrete beam (left) and 

Simplified truss model for concrete members subjected to shear (right). 

Note: the shear strength (in MPa) attributed to the concrete, 

vc, is equal to: 

 

𝑣𝑐 =
230√𝑓𝑐

′

1000 + 0.9𝑑
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The right diagram in Fig. 34.10 shows a simplified representation of the left diagram. Here, the member is treated as 

a truss with a height of jd and contains discrete diagonal compression members inclined at an angle of θ from the 

longitudinal axis. Given these geometric constraints, the vertical tension members in this equivalent truss model must 

be spaced at jdcotθ and have a cross sectional area, A, equal to the following: 

 
𝐴

𝑗𝑑 cot 𝜃
=
𝐴𝑣
𝑠
→ 𝐴 =

𝐴𝑣𝑗𝑑 cot 𝜃

𝑠
 (34.8) 

 

If yielding of these vertical tension members governs the failure of the member, then the maximum shear force which 

can be carried in the equivalent truss, Vs, will occur when the stress in these bars reaches the yield stress, fy: 

 

𝑉𝑠 =
𝐴𝑣𝑓𝑦𝑗𝑑

𝑠
cot 𝜃  (34.9) 

 

In the Canadian design code, the angle of the diagonal stresses is assumed to be equal to θ = 35°, resulting in the 

following equation for Vs: 

 

𝑉𝑠 =
𝐴𝑣𝑓𝑦𝑗𝑑

𝑠
cot 35° (34.10) 

 

For small amounts of shear reinforcement, Vc is still calculated by using Eq. (34.7). However, if the quantity of shear 

reinforcement exceeds a threshold value, then the size effect disappears, and an improved equation can be used. This 

minimum reinforcement requirement is: 

 
𝐴𝑣𝑓𝑦

𝑏𝑤𝑠
≥ 0.06√𝑓𝑐

′ (34.11) 

 

If Eq. (34.11) is satisfied, then Vc is instead calculated as: 

 

𝑉𝑐 = 𝑣𝑐𝑏𝑤𝑗𝑑 = 0.18√𝑓𝑐
′𝑏𝑤𝑗𝑑 (34.12) 

 

Although there are many concepts covered in this chapter, applying them to solve problems is relatively 

straightforward. There are two primary uses of the equations, which are to (1) evaluate the shear strength of a member 

or (2) design the shear reinforcement by selecting the appropriate spacing of stirrups. Each process is described in the 

following summary sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The shear strength (in MPa) attributed to the steel, vs, 

is equal to: 

 

𝑣𝑠 =
𝑉𝑠
𝑏𝑤𝑗𝑑

=
𝐴𝑣𝑓𝑦

𝑏𝑤𝑠
cot 35° 

 

 

 

 

 

 

 

 

Note: The equation for vc when at least a minimum amount 

of shear reinforcement is present is equal to: 

 

𝑣𝑐 = 0.18√𝑓𝑐
′ 
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Summary - Evaluating the Shear Strength of a Member  

This procedure applies when the failure load of a member is needed. Because we are dealing with structural failure, 

the partial safety factors, 0.5 for concrete and 0.6 for steel, are not used.  

 

i. Solve for the reaction forces and obtain the shear force and bending moment diagrams. Determine the 

maximum shear force, V, which is not located within d of a reaction force or applied point load. 

ii. Calculate the relevant parameters used for flexural behaviour, such as n, ρ, k and j. Recall that: 

 

𝑘 = √(𝑛𝜌)2 + 2𝑛𝜌 − 𝑛𝜌 

 

𝑗 = 1 −
1

3
𝑘 

 

iii. Check if the provided amount of reinforcement meets or exceeds the minimum reinforcement requirement 

described in Eq. (34.11). Calculate Vc using the appropriate equation. 

 

𝑉𝑐 =

{
 
 

 
 230√𝑓𝑐

′

1000 + 0.9𝑑
𝑏𝑤𝑗𝑑

𝐴𝑣𝑓𝑦

𝑏𝑤𝑠
< 0.06√𝑓𝑐

′ or no stirrups

0.18√𝑓𝑐
′𝑏𝑤𝑗𝑑

𝐴𝑣𝑓𝑦

𝑏𝑤𝑠
≥ 0.06√𝑓𝑐

′

 

 

iv. If shear reinforcement is present, calculate Vs: 

 

𝑉𝑠 =
𝐴𝑣𝑓𝑦𝑗𝑑

𝑠
cot 35° 

 

v. Calculate the shear strength of the member, Vr: 

 

𝑉𝑟 = 𝑉𝑐 + 𝑉𝑠 ≤ 𝑉𝑚𝑎𝑥 = 0.25𝑓𝑐
′𝑏𝑤𝑗𝑑 

 

vi. Failure of the member occurs when the applied shear force is equal to the shear resistance. 

 

𝑉 = 𝑉𝑟  
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Summary – Designing the Shear Reinforcement of a Member  

The first two steps of this procedure are the same as the procedure for evaluating the shear strength of a member, 

which are finding the shear force diagram and determining the flexural properties k and j. Once these are found, then 

the required task involves determining if shear reinforcement is needed, and if so, the calculating the required spacing 

s. 

 

i. Same as step i in the previous procedure. 

ii. Same as step ii in the previous procedure. 

iii. Check if the shear demand, V, exceeds 0.5Vmax. If so, the cross section is too small and needs to be resized. 

Otherwise, proceed to step iv.  

 

0.5 × 𝑉𝑚𝑎𝑥 = 0.125𝑓𝑐
′𝑏𝑤𝑗𝑑 

 

iv. Check to see if the shear force can be resisted by the Vc alone. If so, the design is complete. 

 

𝑉𝑟 = 0.5𝑉𝑐 = 0.5
230√𝑓𝑐

′

1000 + 0.9𝑑
𝑏𝑤𝑗𝑑 

 

v. If the shear force cannot be carried by Vc alone, provide the minimum amount of shear reinforcement and 

check if this results in enough capacity to carry the shear demand. Remember that providing the minimum 

amount of shear reinforcement permits Eq. (34.12) to be used when calculating Vc instead of Eq. (34.7) 

 
𝐴𝑣𝑓𝑦

𝑏𝑤𝑠
= 0.06√𝑓𝑐

′ → 𝑠 =
𝐴𝑣𝑓𝑦

0.06√𝑓𝑐
′𝑏𝑤

 

 

𝑉𝑟 = 0.5𝑉𝑐 + 0.6𝑉𝑠 = 0.5 × 0.18√𝑓𝑐
′𝑏𝑤𝑗𝑑 + 0.6 ×

𝐴𝑣𝑓𝑦𝑗𝑑

𝑠
cot 35° 

 

vi. If the shear capacity is still too low, then a smaller spacing must be obtained to carry the shear force. This 

spacing, s, can be obtained by letting V = Vr and re-arranging the equation, resulting in the following:  

 

𝑠 =
0.6 × 𝐴𝑣𝑓𝑦𝑗𝑑 cot 35°

𝑉 − 0.5 × 0.18√𝑓𝑐
′𝑏𝑤𝑗𝑑
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Lecture 35 – Prestressed Concrete Structures 
Overview 

In this chapter, the fundamental behaviour of prestressed concrete members is discussed. The force-in-the-tendon 

method to determine the stresses in a prestressed concrete member subjected to bending moments is presented.  

 

Prestressed Concrete 

In many ways, prestressed concrete is similar to reinforced concrete. Steel reinforcement is cast into the concrete and 

after the concrete cracks under loads, the steel carries tensile forces to increase the structure’s load-carrying capacity. 

Unlike reinforced concrete however, prestressing the reinforcement results in the steel carrying significant tensile 

forces before the external loads are applied. Because the steel is embedded into the concrete, these tensile forces in 

the steel cause the concrete to be in a state of compression. Prestressed reinforcement is sometimes referred to as 

active reinforcement because the steel is actively in a state of tension, which contrasts with passive reinforcement, 

which is only engaged once the concrete cracks.  

 

The precompression applied to the concrete by the prestressed reinforcement has a significant impact on its load-

deformation response because significant tensile forces are now needed to overcome the precompression and cause 

cracking. Therefore, under the loads which are expected under typical daily situations, the concrete will remain 

uncracked and behave in a linear elastic manner. Figure 35.1 illustrates the difference prestressing can make for a 

beam carrying a uniform load. For loads which are about half of the predicted failure load, which corresponds to a 

typical factor of safety, the reinforced concrete beam deflects significantly more than the equivalent prestressed beam. 

 

 
Fig. 35.1 – Comparison of load-deformation response of equivalent reinforced and prestressed concrete members. 

 

The stresses in the concrete and steel caused by prestressing are said to be self-equilibrating, meaning that they balance 

each other out without the influence of external loads. Therefore, the total stresses in the concrete can be calculated 

as the sum of the stresses caused by prestressing and the stresses caused from axial loads, shear forces, and moments.  

  

 

 

 

 

Note: Prestressed concrete requires using high-strength 

steel and high strength concrete. This is so the steel can be 

stressed to carry large forces to compress the concrete and 

not yield or rupture. The steel must also be able to sustain 

these stresses over the lifetime of the structure and minimize 

losses due to effects like creep. The concrete must have a 

high compressive strength to avoid crushing under the 

combined effects of the applied loads and the prestress.  

 

 
Fig. 35.2 – Skilled worker post-tensioning cables in a 

concrete member using a hydraulic jack. 

 

Note: There are two primary means of prestressing concrete. 

The first method, called pre-tensioning, involves casting 

concrete around strands of steel which are being pulled. 

Once the concrete hardens, the steel is cut from the bed and 

embedded parts compress the concrete. The second method, 

called post-tensioning, involves casting hollow ducts into 

the concrete. Once the concrete hardens, steel strands are 

inserted into the ducts where they are stressed and anchored. 

 

Note: The prestressed reinforcement in a prestressed 

concrete member is sometimes referred to as tendons.   
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Calculating Stresses in Prestressed Concrete Members with Concentric Tendons 

Consider the prestressed member shown in Fig. 35.3, which has a tendon running along its centroidal axis. The tendon 

is stressed to carry a tensile force, P, which compresses the concrete. The member is simply supported over a span L 

and carries a uniformly distributed load along its span, w, causing a bending moment of wL2/8 at the midspan.   

 

 
Fig. 35.3 – Prestressed member with a concentric tendon. Elevation view (left) and free body diagram at midspan 

(right). Note the tension force acting to the right should be aligned with the tendon. 

 

Consider the stresses in the member at the midspan, also shown in Fig. 35.3. In addition to the bending moment, there 

is also an axial load applied to the section due to the prestressing force. If the concrete is uncracked, and therefore 

behaving in a linear elastic manner, the stresses in the concrete, σc, can be calculated by using the basic definition of 

stress and Navier’s equation: 

 

𝜎𝑐,𝑡𝑜𝑝 = −
𝑃

𝐴
−
𝑀𝑦𝑡𝑜𝑝

𝐼
 (35.1) 

 

𝜎𝑐,𝑏𝑜𝑡 = −
𝑃

𝐴
+
𝑀𝑦𝑏𝑜𝑡
𝐼

 (35.2) 

 

In Eqs (35.1) and (35.2), σc,top and σc,top refer to the concrete stresses at the top and bottom of the beam respectively, 

A is the cross sectional area, I is the second moment of area, and ytop and ybot are the distances to the top and bottom 

of the beam from the centroidal axis. This method is appropriate for finding the stresses if, using these equations, they 

are found to be less than the cracking strength of the concrete.  

 

Calculating Stresses in Prestressed Concrete Members with Eccentric Tendons 

Arranging the tendons in a prestressed concrete member so that they do not align with the centroidal axis is an effective 

strategy when designing for bending. Consider the beam shown in Fig. 35.4 which has a straight tendon that is 

eccentric by a distance e from the centroidal axis. In the absence of applied forces, the prestressing force will compress 

the member at the location of the steel, causing it to curve upwards. This counteracts the downwards displacements 

caused by gravity loads, as shown in Fig. 35.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: If the stresses exceed the tensile strength of the 

concrete, it will crack, and more advanced analysis 

procedures are required to analyze the behaviour. 
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Fig. 35.4 – Prestressed concrete member with eccentric tendons. Elevation view (left) and free body diagram at 

midspan (right). 

 

When the tendon is eccentric, the member curves because the axial force in the concrete, which resists the eccentric 

tensile force in the steel, must act through the centroid of the cross section. Since the two forces are equal and opposite, 

but separated by a distance e, they produce a couple which counteracts the bending moment caused by the loads. The 

stresses in the concrete can then be taken as the sum of those caused by the prestressing force, those caused by the 

eccentricity of the tendon, and those caused by the applied loads: 

 

𝜎𝑐,𝑡𝑜𝑝 = −
𝑃

𝐴
+
𝑃𝑒𝑦𝑡𝑜𝑝

𝐼
−
𝑀𝑦𝑡𝑜𝑝

𝐼
 (35.3) 

 

𝜎𝑐,𝑏𝑜𝑡 = −
𝑃

𝐴
−
𝑃𝑒𝑦𝑏𝑜𝑡
𝐼

+
𝑀𝑦𝑏𝑜𝑡
𝐼

 (35.4) 

 

Eqs. (35.3) and (35.4) can be used to calculate the stresses in the concrete at any location along the length of the 

member. Note that in regions where the bending moment is low, like near the supports, the stresses caused by the 

eccentricity of the tendons may cause the top of the member to crack. Therefore, it is common to have the tendons 

follow a curved profile so that the eccentricity varies to match the demand from the applied loads.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 35.5 – Curving of prestressed member due to eccentric 

tendons (top), which opposes the deflections caused by 

applied loads (bottom) 
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Appendix A – Common Material Properties 
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Appendix B – HSS Tables 
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Appendix C – Steel Wide Flange Beams and Sawn Timber Section Tables 
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Appendix D – Wood Properties 
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Appendix E – Common Unit Conversions 
 

Working with SI units 

Lengths, Strains and Curvatures Pressures and Stresses Forces and Moments 

1 m = 1,000 mm 

1 m2 = 106 mm2 

1 m3 = 109 mm3 

 

1 mm/m = 103 mm/mm 

1 rad/m = 106 mrad/mm 

1 Pa = 1 N/m2 

1 kPa = 1 kN/m2 

1 MPa = 1 MN/m2 

1 MPa = 1 N/mm2 

1 kN = 1,000 N 

1 MN = 106 N 

 

1 Nm = 1,000 Nmm 

1 kNm = 106 Nmm 

 

Working with other unit systems and other miscellaneous quantities 

1 foot = 12 inches 

1 cubit = 18 inches 

1 yard = 3 feet 

1 chain = 22 yards 

1 furlong = 10 chains 

1 mile = 8 furlongs 

1 mile = 1,760 yards 

 

1 acre = 10 square chains 

1 square mile = 640 acres 

1 ha = 10,000 square m 

 

1 inch = 25.4 mm 

1 foot = 304.8 mm 

1 mile = 1609 m 

1 ha = 2.47 acres 

 

1 kg = 2.20 lbs 

1 stone = 14.0 lbs 

 

1 lbs/ ft3 = 16.02 kg/ m3 

100 lbs/ft3 = 15.72 kN/m3 

 

1 N = 0.225 lbs (force) 

1 kip = 4.45 kN 

9.81 m/s2 = 32.2 feet/s2 

1 kNm = 0.738 kip ft 

1 kNm = 8.85 kip in 

 

1 hp = 746 Watt 

 

1 km/h = 0.278 m/s 

1 km/h = 0.621 miles/h 

1 knot = 1.852 km/h 

1 MPa = 145.0 psi 

1 kN/m2 = 20.9 lbs/ft2 
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Appendix F – Areas and Centroids of Common Shapes 
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Appendix G – Common Canadian Reinforcing Bar Information 
 

Designation 
Linear Density 

(kg/m) 

Nominal Diameter 

(mm) 

Cross-Sectional Area 

(mm2) 

10M 0.785 11.3 100 

15M 1.570 16.0 200 

20M 2.355 19.6 300 

25M 3.925 25.2 500 

30M 5.495 29.9 700 

35M 7.850 35.7 1000 

45M 11.775 43.7 1500 

55M 19.625 56.4 2500 

 

 


